Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mol Plant Pathol ; 24(3): 191-207, 2023 03.
Article in English | MEDLINE | ID: mdl-36528383

ABSTRACT

Rust fungi (Pucciniales) are a diverse group of plant pathogens in natural and agricultural systems. They pose ongoing threats to the diversity of native flora and cause annual crop yield losses. Agricultural rusts are predominantly managed with fungicides and breeding for resistance, but new control strategies are needed on non-agricultural plants and in fragile ecosystems. RNA interference (RNAi) induced by exogenous double-stranded RNA (dsRNA) has promise as a sustainable approach for managing plant-pathogenic fungi, including rust fungi. We investigated the mechanisms and impact of exogenous dsRNA on rust fungi through in vitro and whole-plant assays using two species as models, Austropuccinia psidii (the cause of myrtle rust) and Coleosporium plumeriae (the cause of frangipani rust). In vitro, dsRNA either associates externally or is internalized by urediniospores during the early stages of germination. The impact of dsRNA on rust infection architecture was examined on artificial leaf surfaces. dsRNA targeting predicted essential genes significantly reduced germination and inhibited development of infection structures, namely appressoria and penetration pegs. Exogenous dsRNA sprayed onto 1-year-old trees significantly reduced myrtle rust symptoms. Furthermore, we used comparative genomics to assess the wide-scale amenability of dsRNA to control rust fungi. We sequenced genomes of six species of rust fungi, including three new families (Araucariomyceaceae, Phragmidiaceae, and Skierkaceae) and identified key genes of the RNAi pathway across 15 species in eight families of Pucciniales. Together, these findings indicate that dsRNA targeting essential genes has potential for broad-use management of rust fungi across natural and agricultural systems.


Subject(s)
Basidiomycota , RNA, Double-Stranded , RNA, Double-Stranded/genetics , Ecosystem , Basidiomycota/genetics , Fungi/genetics , RNA Interference , Genomics
2.
Small ; 16(34): e2002035, 2020 08.
Article in English | MEDLINE | ID: mdl-32700460

ABSTRACT

"After a certain high level of technical skill is achieved, science and art tend to coalesce in aesthetics, plasticity, and form. The greatest scientists are always artists as well." said Albert Einstein. Currently, photographic images bridge the gap between microfluidic/lab-on-a-chip devices and art. However, the microfluidic chip itself should be a form of art. Here, novel vibrant epoxy dyes are presented in combination with a simple process to fill and preserve microfluidic chips, to produce microfluidic art or art-on-a-chip. In addition, this process can be used to produce epoxy dye patterned substrates that preserve the geometry of the microfluidic channels-height within 10% of the mold master. This simple approach for preserving microfluidic chips with vibrant, colorful, and long-lasting epoxy dyes creates microfluidic chips that can easily be visualized and photographed repeatedly, for at least 11 years, and hence enabling researchers to showcase their microfluidic chips to potential graduate students, investors, and collaborators.

3.
Sci Rep ; 9(1): 14420, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31595008

ABSTRACT

Artificial surfaces are commonly used in place of leaves in phyllosphere microbiology to study microbial behaviour on plant leaf surfaces. These surfaces enable a reductionist approach to be undertaken, to enable individual environmental factors influencing microorganisms to be studied. Commonly used artificial surfaces include nutrient agar, isolated leaf cuticles, and reconstituted leaf waxes. Recently, replica surfaces mimicking the complex topography of leaf surfaces for phyllosphere microbiology studies are appearing in literature. Replica leaf surfaces have been produced in agar, epoxy, polystyrene, and polydimethylsiloxane (PDMS). However, none of these protocols are suitable for replicating fragile leaves such as of the model plant Arabidopsis thaliana. This is of importance, as A. thaliana is a model system for molecular plant genetics, molecular plant biology, and microbial ecology. To overcome this limitation, we introduce a versatile replication protocol for replicating fragile leaf surfaces into PDMS. Here we demonstrate the capacity of our replication process using optical microscopy, atomic force microscopy (AFM), and contact angle measurements to compare living and PDMS replica A. thaliana leaf surfaces. To highlight the use of our replica leaf surfaces for phyllosphere microbiology, we visualise bacteria on the replica leaf surfaces in comparison to living leaf surfaces.


Subject(s)
Arabidopsis/microbiology , Bacteria/ultrastructure , Plant Leaves/microbiology , Arabidopsis/ultrastructure , Bacteria/pathogenicity , Dimethylpolysiloxanes/chemistry , Microscopy , Plant Leaves/ultrastructure , Surface Properties , Waxes/chemistry
4.
PLoS One ; 14(6): e0218102, 2019.
Article in English | MEDLINE | ID: mdl-31170240

ABSTRACT

Artificial surfaces are routinely used instead of leaves to enable a reductionist approach in phyllosphere microbiology, the study of microorganisms residing on plant leaf surfaces. Commonly used artificial surfaces include, flat surfaces, such as metal and nutrient agar, and microstructured surfaces, such as isolate leaf cuticles or reconstituted leaf waxes. However, interest in replica leaf surfaces as an artificial surface is growing, as replica surfaces provide an improved representation of the complex topography of leaf surfaces. To date, leaf surfaces have predominantly been replicated for their superhydrophobic properties. In contrast, in this paper we investigated the potential of agarose, the elastomer polydimethylsiloxane (PDMS), and gelatin as replica leaf surface materials for phyllosphere microbiology studies. Using a test pattern of pillars, we investigated the ability to replicate microstructures into the materials, as well as the degradation characteristics of the materials in environmental conditions. Pillars produced in PDMS were measured to be within 10% of the mold master and remained stable throughout the degradation experiments. In agarose and gelatin the pillars deviated by more than 10% and degraded considerably within 48 hours in environmental conditions. Furthermore, we investigated the surface energy of the materials, an important property of a leaf surface, which influences resource availability and microorganism attachment. We found that the surface energy and bacterial viability on PDMS was comparable to isolated Citrus × aurantium and Populus × canescens leaf cuticles. Hence indicating that PDMS is the most suitable material for replica leaf surfaces. In summary, our experiments highlight the importance of considering the inherent material properties when selecting a replica leaf surface for phyllosphere microbiology studies. As demonstrated, a PDMS replica leaf offers a control surface that can be used for investigating microbe-microbe and microbe-plant interactions in the phyllosphere, which will enable mitigation strategies against pathogens to be developed.


Subject(s)
Plant Leaves/anatomy & histology , Plant Leaves/microbiology , Animals , Gelatin , Image Processing, Computer-Assisted , Microbial Viability , Pantoea/physiology , Pattern Recognition, Automated , Surface Properties , Swine
5.
ACS Sens ; 4(1): 3-19, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30525462

ABSTRACT

Good glucose management through an insulin dose regime based on the metabolism of glucose helps millions of people worldwide manage their diabetes. Since Banting and Best extracted insulin, glucose management has improved due to the introduction of insulin analogues that act from 30 minutes to 28 days, improved insulin dose regimes, and portable glucose meters, with a current focus on alternative sampling sites that are less invasive. However, a piece of the puzzle is still missing-the ability to measure insulin directly in a Point-of-Care device. The ability to measure both glucose and insulin concurrently will enable better glucose control by providing an improved estimate for insulin sensitivity, minimizing variability in control, and maximizing safety from hypoglycaemia. However, direct detection of free insulin has provided a challenge due to the size of the molecule, the low concentration of insulin in blood, and the selectivity against interferants in blood. This review summarizes current insulin detection methods from immunoassays to analytical chemistry, and sensors. We also discuss the challenges and potential of each of the methods towards Point-of-Care insulin detection.


Subject(s)
Insulin/blood , Biosensing Techniques/methods , Chemistry Techniques, Analytical/methods , Electrochemical Techniques/methods , Humans , Immunoassay/methods , Point-of-Care Testing
6.
Sci Rep ; 8: 46950, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29493568

ABSTRACT

This corrects the article DOI: 10.1038/srep09942.

7.
Biomicrofluidics ; 10(2): 024117, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27099646

ABSTRACT

Microfluidic platforms enable a variety of physical or chemical stimulation of single or multiple cells to be examined and monitored in real-time. To date, intracellular calcium signalling research is, however, predominantly focused on observing the response of cells to a single mode of stimulation; consequently, the sensitising/desensitising of cell responses under concurrent stimuli is not well studied. In this paper, we provide an extended Discontinuous Dielectrophoresis procedure to investigate the sensitising of chemical stimulation, over an extensive range of shear stress, up to 63 dyn/cm(2), which encompasses shear stresses experienced in the arterial and venus systems (10 to 60 dyn/cm(2)). Furthermore, the TRPV4-selective agonist GSK1016790A, a form of chemical stimulation, did not influence the ability of the cells' to remain immobilised under high levels of shear stress; thus, enabling us to investigate shear stress stimulation on agonism. Our experiments revealed that shear stress sensitises GSK1016790A-evoked intracellular calcium signalling of cells in a shear-stimulus dependent manner, as observed through a reduction in the cellular response time and an increase in the pharmacological efficacy. Consequently, suggesting that the role of TRPV4 may be underestimated in endothelial cells-which experience high levels of shear stress. This study highlights the importance of conducting studies at high levels of shear stress. Additionally, our approach will be valuable for examining the effect of high levels of shear on different cell types under different conditions, as presented here for agonist activation.

8.
Sci Rep ; 5: 11973, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26202725

ABSTRACT

Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm(2). This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress.


Subject(s)
Calcium Signaling/physiology , Cell Separation/instrumentation , Electrophoresis/instrumentation , Lab-On-A-Chip Devices , Mechanotransduction, Cellular/physiology , TRPV Cation Channels/physiology , Calcium/metabolism , Electrophoresis/methods , Equipment Design , Equipment Failure Analysis , HEK293 Cells , Humans , Ion Channel Gating/physiology
9.
Sci Rep ; 5: 9942, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25906043

ABSTRACT

Recently, the bubble-based systems have offered a new paradigm in microfluidics. Gas bubbles are highly flexible, controllable and barely mix with liquids, and thus can be used for the creation of reconfigurable microfluidic systems. In this work, a hydrodynamically actuated bubble-based microfluidic system is introduced. This system enables the precise movement of air bubbles via axillary feeder channels to alter the geometry of the main channel and consequently the flow characteristics of the system. Mixing of neighbouring streams is demonstrated by oscillating the bubble at desired displacements and frequencies. Flow control is achieved by pushing the bubble to partially or fully close the main channel. Patterning of suspended particles is also demonstrated by creating a large bubble along the sidewalls. Rigorous analytical and numerical calculations are presented to describe the operation of the system. The examples presented in this paper highlight the versatility of the developed bubble-based actuator for a variety of applications; thus providing a vision that can be expanded for future highly reconfigurable microfluidics.

10.
Anal Bioanal Chem ; 407(12): 3437-48, 2015 May.
Article in English | MEDLINE | ID: mdl-25701421

ABSTRACT

Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms. Despite this, dielectrophoresis has been largely utilized for studying of non-budding yeast cells and has rarely been used for manipulation of budding cells. Here, we utilize dielectrophoresis for studying the dynamic response of budding cells to different concentrations of Lyticase. This involves separation of the budding yeasts from a background of non-budding cells and their subsequent immobilization onto the microelectrodes at desired densities down to single cell level. The immobilized yeasts are then stimulated with Lyticase to remove the cell wall and convert them into spheroplasts, in a highly dynamic process that depends on the concentration of Lyticase. We also introduce a novel method for immobilization of the cell organelles released from the lysed cells by patterning multi-walled carbon nanotubes (MWCNTs) between the microelectrodes.


Subject(s)
Electrophoresis/methods , Glucan Endo-1,3-beta-D-Glucosidase/pharmacology , Multienzyme Complexes/pharmacology , Peptide Hydrolases/pharmacology , Saccharomyces cerevisiae/cytology , Single-Cell Analysis/methods , Cells, Immobilized/chemistry , Cells, Immobilized/cytology , Electrophoresis/instrumentation , Equipment Design , Glucan Endo-1,3-beta-D-Glucosidase/chemistry , Microelectrodes , Multienzyme Complexes/chemistry , Nanotubes, Carbon/chemistry , Peptide Hydrolases/chemistry , Saccharomyces cerevisiae/drug effects , Single-Cell Analysis/instrumentation , Spheroplasts
11.
Anal Chem ; 87(4): 2389-95, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25611070

ABSTRACT

The localized motion of cells within a cluster is an important feature of living organisms and has been found to play roles in cell signaling, communication, and migration, thus affecting processes such as proliferation, transcription, and organogenesis. Current approaches for inducing dynamic movement into cells, however, focus predominantly on mechanical stimulation of single cells, affect cell integrity, and, more importantly, need a complementary mechanism to pattern cells. In this article, we demonstrate a new strategy for the mechanical stimulation of large cell clusters, taking advantage of dielectrophoresis. This strategy is based on the cellular spin resonance mechanism, but it utilizes coating agents, such as bovine serum albumin, to create consistent rotation and vibration of individual cells. The treatment of cells with coating agents intensifies the torque induced on the cells while reducing the friction at the cell-cell and cell-substrate interfaces, resulting in the consistent motion of the cells. Such localized motion can be modulated by varying the frequency and voltage of the applied sinusoidal AC signal and can be achieved in the absence and presence of flow. This strategy enables the survival and functioning of moving cells within large-scale clusters to be investigated.


Subject(s)
Electrophoresis , Rotation , Saccharomyces cerevisiae/cytology , Vibration , Animals , Cattle , Models, Molecular , Particle Size , Serum Albumin, Bovine/chemistry , Surface Properties
12.
Small ; 10(23): 4810-26, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25238429

ABSTRACT

Intercellular signalling has been identified as a highly complex process, responsible for orchestrating many physiological functions. While conventional methods of investigation have been useful, their limitations are impeding further development. Microfluidics offers an opportunity to overcome some of these limitations. Most notably, microfluidic systems can emulate the in-vivo environments. Further, they enable exceptionally precise control of the microenvironment, allowing complex mechanisms to be selectively isolated and studied in detail. There has thus been a growing adoption of microfluidic platforms for investigation of cell signalling mechanisms. This review provides an overview of the different signalling mechanisms and discusses the methods used to study them, with a focus on the microfluidic devices developed for this purpose.


Subject(s)
Cell Communication , Microfluidic Analytical Techniques , Microfluidics/methods , Signal Transduction , Animals , Coculture Techniques , Diffusion , Equipment Design , Gap Junctions/metabolism , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hippocampus/metabolism , Humans , Neurons/metabolism , Synapses/metabolism
13.
PLoS One ; 9(8): e104109, 2014.
Article in English | MEDLINE | ID: mdl-25089528

ABSTRACT

Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment.


Subject(s)
Microfluidic Analytical Techniques , Microscopy, Electron, Scanning , Saccharomycetales/ultrastructure , Cell Adhesion
14.
Lab Chip ; 14(9): 1496-514, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24663505

ABSTRACT

Biomarkers have been described as characteristics, most often molecular, that provide information about biological states, whether normal, pathological, or therapeutically modified. They hold great potential to assist diagnosis and prognosis, monitor disease, and assess therapeutic effectiveness. While a few biomarkers are routinely utilised clinically, these only reflect a very small percentage of all biomarkers discovered. Numerous factors contribute to the slow uptake of these new biomarkers, with challenges faced throughout the biomarker development pipeline. Microfluidics offers two important opportunities to the field of biomarkers: firstly, it can address some of these developmental obstacles, and secondly, it can provide the precise and complex platform required to bridge the gap between biomarker research and the biomarker-based analytical device market. Indeed, adoption of microfluidics has provided a new avenue for advancement, promoting clinical utilisation of both biomarkers and their analytical platforms. This review will discuss biomarkers and outline microfluidic platforms developed for biomarker analysis.


Subject(s)
Biomarkers/analysis , Microfluidic Analytical Techniques/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...