Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 20(8): e3001756, 2022 08.
Article in English | MEDLINE | ID: mdl-35969606

ABSTRACT

Mitotic spindle orientation (SO) is a conserved mechanism that governs cell fate and tissue morphogenesis. In the developing epidermis, a balance between self-renewing symmetric divisions and differentiative asymmetric divisions is necessary for normal development. While the cellular machinery that executes SO is well characterized, the extrinsic cues that guide it are poorly understood. Here, we identified the basal cell adhesion molecule (BCAM), a ß1 integrin coreceptor, as a novel regulator of epidermal morphogenesis. In utero RNAi-mediated depletion of Bcam in the mouse embryo did not hinder ß1 integrin distribution or cell adhesion and polarity. However, Bcam depletion promoted apoptosis, thinning of the epidermis, and symmetric cell division, and the defects were reversed by concomitant overexpression of the apoptosis inhibitor Xiap. Moreover, in mosaic epidermis, depletion of Bcam or Xiap induced symmetric divisions in neighboring wild-type cells. These results identify apoptosis and epidermal architecture as extrinsic cues that guide SO in the developing epidermis.


Subject(s)
Integrin beta1 , Spindle Apparatus , Animals , Apoptosis , Cell Division , Cell Polarity , Epidermis , Integrin beta1/metabolism , Mice , Spindle Apparatus/metabolism
2.
Nat Cell Biol ; 24(7): 1049-1063, 2022 07.
Article in English | MEDLINE | ID: mdl-35798842

ABSTRACT

Anchored cells of the basal epidermis constantly undergo proliferation in an overcrowded environment. An important regulator of epidermal proliferation is YAP, which can be controlled by both cell-matrix and cell-cell interactions. Here, we report that THY1, a GPI-anchored protein, inhibits epidermal YAP activity through converging molecular mechanisms. THY1 deficiency leads to increased adhesion by activating the integrin-ß1-SRC module. Notably, regardless of high cellular densities, the absence of THY1 leads to the dissociation of an adherens junction complex that enables the release and translocation of YAP. Due to increased YAP-dependent proliferation, Thy1-/- mice display enhanced wound repair and hair follicle regeneration. Taken together, our work reveals THY1 as a crucial regulator of cell-matrix and cell-cell interactions that controls YAP activity in skin homeostasis and regeneration.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Epidermis/metabolism , Homeostasis , Mice , Skin/metabolism
3.
BMC Biol ; 20(1): 145, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710398

ABSTRACT

BACKGROUND: The establishment of tissue architecture requires coordination between distinct processes including basement membrane assembly, cell adhesion, and polarity; however, the underlying mechanisms remain poorly understood. The actin cytoskeleton is ideally situated to orchestrate tissue morphogenesis due to its roles in mechanical, structural, and regulatory processes. However, the function of many pivotal actin-binding proteins in mammalian development is poorly understood. RESULTS: Here, we identify a crucial role for anillin (ANLN), an actin-binding protein, in orchestrating epidermal morphogenesis. In utero RNAi-mediated silencing of Anln in mouse embryos disrupted epidermal architecture marked by adhesion, polarity, and basement membrane defects. Unexpectedly, these defects cannot explain the profoundly perturbed epidermis of Anln-depleted embryos. Indeed, even before these defects emerge, Anln-depleted epidermis exhibits abnormalities in mitotic rounding and its associated processes: chromosome segregation, spindle orientation, and mitotic progression, though not in cytokinesis that was disrupted only in Anln-depleted cultured keratinocytes. We further show that ANLN localizes to the cell cortex during mitotic rounding, where it regulates the distribution of active RhoA and the levels, activity, and structural organization of the cortical actomyosin proteins. CONCLUSIONS: Our results demonstrate that ANLN is a major regulator of epidermal morphogenesis and identify a novel role for ANLN in mitotic rounding, a near-universal process that governs cell shape, fate, and tissue morphogenesis.


Subject(s)
Contractile Proteins , Microfilament Proteins , Actin Cytoskeleton/metabolism , Animals , Contractile Proteins/metabolism , Cytokinesis/physiology , Mammals , Mice , Microfilament Proteins/genetics , Microfilament Proteins/metabolism
4.
Development ; 147(23)2020 12 11.
Article in English | MEDLINE | ID: mdl-33310787

ABSTRACT

Planar cell polarity (PCP) is essential for tissue morphogenesis and homeostasis; however, the mechanisms that orchestrate the cell shape and packing dynamics required to establish PCP are poorly understood. Here, we identified a major role for the globular (G)-actin-binding protein thymosin-ß4 (TMSB4X) in PCP establishment and cell adhesion in the developing epidermis. Depletion of Tmsb4x in mouse embryos hindered eyelid closure and hair-follicle angling owing to PCP defects. Tmsb4x depletion did not preclude epidermal cell adhesion in vivo or in vitro; however, it resulted in abnormal structural organization and stability of adherens junction (AJ) due to defects in filamentous (F)-actin and G-actin distribution. In cultured keratinocytes, TMSB4X depletion increased the perijunctional G/F-actin ratio and decreased G-actin incorporation into junctional actin networks, but it did not change the overall actin expression level or cellular F-actin content. A pharmacological treatment that increased the G/F-actin ratio and decreased actin polymerization mimicked the effects of Tmsb4x depletion on both AJs and PCP. Our results provide insights into the regulation of the actin pool and its involvement in AJ function and PCP establishment.


Subject(s)
Cell Polarity/genetics , Embryonic Development/genetics , Morphogenesis/genetics , Thymosin/genetics , Actin Cytoskeleton/genetics , Actins/genetics , Adherens Junctions/genetics , Animals , Cell Adhesion/genetics , Cell Shape/genetics , Epidermal Cells/metabolism , Epidermis/growth & development , Homeostasis/genetics , Keratinocytes/metabolism , Mice , Microfilament Proteins/genetics
5.
Poult Sci ; 98(8): 3268-3277, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31041445

ABSTRACT

Broiler chicks in the immediate posthatch handling period are exposed to thermal stress, with potentially harmful consequences for muscle growth and structure (e.g., less protein and more fat deposition). We addressed the effects of broiler chicks' exposure to various ambient temperatures during the first 13 D posthatch on their performance, as well as on muscle development and structure, up to day 35. Body weight and pectoralis muscle growth were lower throughout the entire period in the high-heat-exposed chicks (39°C, Hot) and to a lesser extent in the mild-heat-exposed chicks (35°C, Hot Mild) than in the Control chicks that were raised under a commercial protocol. In the cold-exposed chicks (29oC, Cold), BW and pectoralis muscle absolute growth were similar to the Control group throughout the entire period. The lower body and muscle growth in the Hot and Hot Mild groups were reflected in a lower number of myonuclei expressing proliferating cell nuclear cell in pectoralis major muscle cross sections sampled on day 8, in the distribution of myofibers as the experiment progressed, and in mean myofiber diameter on day 35, whereas in the Cold group, these numbers exceeded that of the Control group. However, TUNEL assay revealed similar cell survival in all groups. Hematoxylin-eosin and Oil red O staining revealed the highest fat deposition in the pectoralis muscle derived from the Hot group, whereas lower fat deposition was observed in the Control Cold group. These results were corroborated by immunostaining for CCAAT/enhancer binding protein ß in the pectoralis muscle, the levels of which were significantly higher in the Hot and Hot Mild groups on day 35 than in the Control group. Similar results were observed with Sirius red staining for collagen content in the pectoralis muscle. Together, the results imply long-term effects of chronic heat stress vs. cold stress in the early posthatch period on the broiler's body and muscle growth in general and myodegeneration of the pectoralis muscle in particular.


Subject(s)
Chickens/growth & development , Cold-Shock Response/physiology , Heat-Shock Response/physiology , Pectoralis Muscles/growth & development , Animals , Animals, Newborn/physiology , Body Weight , Chickens/physiology , Cold Temperature/adverse effects , Collagen/analysis , Hot Temperature/adverse effects , Male , Muscle Development/physiology , Myofibrils , Pectoralis Muscles/chemistry , Stress, Physiological
6.
J Cell Biol ; 218(4): 1390-1406, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30867227

ABSTRACT

Development of the skin epidermis requires tight spatiotemporal control over the activity of several signaling pathways; however, the mechanisms that orchestrate these events remain poorly understood. Here, we identify a key role for the Wave complex proteins ABI1 and Wave2 in regulating signals that control epidermal shape and growth. In utero RNAi-mediated silencing of Abi1 or Wasf2 induced cellular hyperproliferation and defects in architecture of the interfollicular epidermis (IFE) and delayed hair follicle growth. Unexpectedly, SOX9, a hair follicle growth regulator, was aberrantly expressed throughout the IFE of the mutant embryos, and its forced overexpression mimicked the Wave complex loss-of-function phenotype. Moreover, Wnt signaling, which regulates SOX9+ cell specification, was up-regulated in Wave complex loss-of-function IFE. Importantly, we show that the Wave complex regulates filamentous actin content and that a decrease in actin levels is sufficient to elevate Wnt/ß-catenin signaling. Our results identify a novel role for Wave complex- and actin-regulated signaling via Wnt and SOX9 in skin development.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Proliferation , Cytoskeletal Proteins/metabolism , Epidermis/metabolism , Keratinocytes/metabolism , SOX9 Transcription Factor/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Wnt Signaling Pathway , Adaptor Proteins, Signal Transducing/genetics , Animals , Cells, Cultured , Cytoskeletal Proteins/genetics , Epidermis/abnormalities , Gene Expression Regulation, Developmental , Gene Silencing , Hair Follicle/abnormalities , Hair Follicle/metabolism , Mice , Morphogenesis , Phosphorylation , SOX9 Transcription Factor/genetics , Wiskott-Aldrich Syndrome Protein Family/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...