Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(16): 8418-8426, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38588383

ABSTRACT

Degradation of dyes under natural light sources is one of the most active research areas in basic science for greener technology. In this context, the photocatalytic activity of semiconductors has received massive attention in solving water treatment-related issues as these possess enormous potential for degrading organic impurities. Here, we report that barium aluminate (BaAl2O4, BAO), which has been extensively studied for photoluminescence applications, is found to be a highly potent candidate for photocatalytic activities. We have explored the degradation of dyes (meant for water purification) by using the photocatalytic properties of pure and Dy- and Yb-codoped BAO. Crystal structure, electron microscopy, and Raman analysis of the autocombustion-synthesized pure and codoped BAO samples revealed significant morphological changes such as increased particle size and stabilization of rod-like structures. UV-vis absorbance measurements confirm the presence of multiple bandgaps in the BAO samples, which is substantiated by X-ray absorption spectroscopy measurements. Photocatalytic degradation studies of methylene blue (MB) dye (with different catalyst concentrations, dopings, and MB dye concentrations) have been carried out by using BAO. The kinetics of the photocatalytic degradation measurements has been explained by the Boltzmann distribution function, and the fastest (in less than 40 min), with more than 99% degradation of MB impurity, is reported here for the first time in BAO compounds. Synthesized BAO samples show excellent cyclic stability, which is essential for their potential applications in environmental remediation. The trade-off between the enhancement of surface area and increased particle size is considered the key parameter for controlling the photocatalytic performance of the BAO catalyst after Dy and Yb codopings.

2.
Nanoscale ; 16(1): 411-426, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38073595

ABSTRACT

Designing molecular cages for atomic/molecular scale guests is a special art used by material chemists to harvest the virtues of the otherwise vile idea known as "the cage". In recent years, there has been a notable surge in research investigations focused on the exploration and utilization of the distinct advantages offered by this art in the advancement of efficient and stable bio-electrocatalysts. This usually is achieved through encapsulation of biologically accessible redox proteins within specifically designed molecular cages and matrices. Herein, we present the first successful method for encaging cytochrome c (Cyt-c), a clinically significant enzyme system, inside coordination-driven self-assembled Cu6Pd12Fe12 heterometallic hexagonal molecular boxes (Cu-HMHMB), in order to create a Cyt-c@Cu-HMHMB composite. 1H NMR, FTIR, and UV-Vis spectroscopy, ICP-MS, TGA and voltammetric investigations carried out on the so-crafted Cyt-c@Cu-HMHMB bio-inorganic composite imply that the presented strategy ensures encaging of Cyt-c in a catalytically active, electrochemically stable and redox-accessible state inside the Cu-HMHMB. Cyt-c@Cu-HMHMB is demonstrated to exhibit excellent stability and electrocatalytic activity toward very selective, sensitive electrochemical sensing of nitrite exhibiting a limit of detection as low as 32 nanomolar and a sensitivity of 7.28 µA µM-1 cm-2. Importantly, Cyt-c@Cu-HMHMB is demonstrated to exhibit an excellent electrocatalytic performance toward the 4e pathway oxygen reduction reaction (ORR) with an onset potential of 0.322 V (vs. RHE) and a Tafel slope of 266 mV dec-1. Our findings demonstrate that Cu-HMHMB is an excellent matrix for Cyt-c encapsulation. We anticipate that the entrapment-based technique described here will be applicable to other enzyme systems and Cyt-c for various electrochemical and other applications.


Subject(s)
Cytochromes c , Nitrites , Cytochromes c/metabolism , Oxidation-Reduction , Spectrum Analysis
3.
ACS Omega ; 7(17): 15082-15089, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35572746

ABSTRACT

Facile access to new one-walled meso-substituted phenylboronic acid-functionalized calix[4]pyrrole (C4P) has been revealed for the first time, starting from cost-effective and easily accessible materials. The structures of both the intermediate dipyrromethane (DPM) and the targeted functionalized C4P have been confirmed by means of 1H-NMR, 13C-NMR, IR, and HRMS spectral data. The voltammetric investigations of the functionalized C4P films cast over a glassy carbon electrode (C4P-GCE) clearly establish the redox stability and redox accessibility of the boronic acid functional moiety present in the C4P framework. We demonstrate that the presence of the unique boronic acid functionality in the C4P endows it with an excellent potential for the highly sensitive electrochemical sensing of the neurotransmitter dopamine (DA). A linear correlation between the strength of the Faradaic signals corresponding to the electro-oxidation of DA over C4P-GCE and the concentration of DA was observed in a concentration range as wide as 0.165-2.302 µM. The C4P-GCE has revealed exceptional stability and reproducibility in the electrochemical sensing of DA, with a nanomolar level limit of detection as low as 15 nM.

4.
ACS Omega ; 5(49): 31640-31643, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33344815

ABSTRACT

Critical micelle concentration (cmc) is a key parameter of generally used surfactants, and many experimental techniques like tensiometry, conductivity, spectrophotometry, fluorometry, etc. for its determination have been reported. However, these contemporary methods for cmc determination are tedious, are time-consuming, are sensitive, and require sophisticated instrumentation. Herein, we demonstrate that the cmc of the surfactants can be estimated via monitoring the variation in the apparent weight of a density bottle floating in a surfactant solution as a function of surfactant concentration. The proposed method requires the use of a simple weighing balance; a cost-affordable instrument always available in scientific laboratories. The proposed method is simple to execute and does not require any complicated data analysis procedures. As an experimental proof attached to the claim, we demonstrate the estimation of the cmcs of all types of surfactants, viz., anionic, cationic, and nonionic, through the formulated method. The results obtained in terms of cmc values of the chosen surfactants closely match those reported through the use of different standardized protocols. The formulated experimental protocol is desirable in terms of the simplicity of the protocol, accuracy, and reproducibility of the results, and cost and accessibility of the required instrument. All these attributes of the presented protocol qualify it as an appropriate substitute to the modern techniques commonly used for the cmc determination.

5.
Int J Biol Macromol ; 154: 166-172, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32151719

ABSTRACT

Planetary ball milling of chitosan microparticles (CMP) for 8 h produced chitosan nanoparticles (CNP) having hydrodynamic diameter of 615.18 nm. The ζ-potential decreased from 56.48 mV (CMP) to 31.52 mV (CNP). High resolution transmission electron microscopy (HRTEM) revealed nanosize, irregular shape and surface roughening of CNP. CNP was whiter than CMP having higher water absorption capacity and decreased flow ability. Both CMP and CNP showed negligible swelling and no water solubility. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) revealed no chemical changes and X-ray diffraction (XRD) showed decreased crystallinity in CNP. In CNP, thermogravimetric analysis (TGA) revealed increased thermal degradation; differential thermogravimetric (DTG) revealed increased rate of thermal degradation; and high temperature differential scanning calorimetry (HDSC) revealed broadening of endothermic and exothermic phases and reduction in glass transition temperature as compared to CMP. In conclusion, planetary ball milling for 8 h produces bright, amorphous and rough CNP with improved functional and comparable thermal properties.


Subject(s)
Chitosan/chemistry , Nanoparticles/chemistry , Nanotechnology , Absorption, Physicochemical , Molecular Weight , Particle Size , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...