Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 326: 111527, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334621

ABSTRACT

Defence to pathogens must be specific. In the past, we have dissected early signalling deployed by bacterial elicitors in a grapevine cell system. In the current work, we asked, how defence of fungi differs. Fungal diseases of grapevine pose great challenges for global viticulture and require massive plant protection measures. Plant cells are able to sense chitin, a central component of fungal cell walls and respond by activation of basal defence. We, therefore mapped early defence responses evoked by chitosan, a chitin fragment able to bind to chitin receptors. We found an activation of calcium influx, monitored by extracellular alkalinisation due to a co-transport of protons, remodelling of actin (but not of microtubules), and the activation of transcripts for phytoalexin synthesis, jasmonate-signalling, salicylate signalling, and chitinase. Interestingly, Gadolinium, an inhibitor of calcium influx, can inhibit extracellular alkalinisation in response to chitosan, while the induction of the phytoalexin synthesis transcripts was specifically promoted. In contrast, both DMSO and benzyl alcohol, compounds known to modulate membrane fluidity, partially inhibited the transcript responses to chitosan. We discuss these data with a model, where chitosan deploys signalling culminating in activation of defence related transcripts, but at the same time activates calcium influx that negatively feeds back on the same signal chain, which might be a mechanism to achieve a temporal signature that is rapid, but transient.


Subject(s)
Chitosan , Vitis , Calcium/metabolism , Actins/metabolism , Vitis/metabolism , Chitosan/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Carbohydr Polym ; 145: 64-70, 2016 Jul 10.
Article in English | MEDLINE | ID: mdl-27106152

ABSTRACT

It is already known that chitin in a single organism can exhibit huge differences depending on the functions it serves in different body parts, but the alterations in the characteristics of chitin in course of developmental stages of an organism still remain unknown. This study presents findings on how chitin matrix is changing physicochemically through discrete morphological stages - larva, pupa and adult - of an insect (Vespa crabro). Chitin content of the organisms were found to increase gradually as the organism grew; 2.1, 6.2 and 10.3%, with a dramatic increase in chitin deposition (nearly 3 folds) during the instar from larva to pupa. Enzymatic digestion test demonstrated that chitin isolates were close to pure. Chitin isolates were also subjected to thermal pyrolysis and no variations were observed in the thermal stability of the samples. However, it was observed that surface characteristics of chitin changed greatly as the insect grew.


Subject(s)
Chitin/chemistry , Wasps , Animals , Carbon/analysis , Chitin/ultrastructure , Chitinases/chemistry , Hydrogen/analysis , Larva , Microscopy, Electron, Scanning , Nitrogen/analysis , Pupa , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
3.
Carbohydr Polym ; 132: 9-16, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26256318

ABSTRACT

It is well known that physicochemical properties of chitin are related with the extraction method. Recently, it was revealed that some physicochemical properties of chitin are also related with taxonomical relationship. For the first time in this study, it was tested how these properties of chitin are affected by different body parts of one organism. The chitins were extracted from five different body parts (head, thorax, abdomen, legs and wings) of honeybee. These chitins were physicochemically characterized and differences among these body parts were identified. Highest chitin content was observed in legs (13.25%) while the lowest from thorax (6.79%). The surface morphologies of the isolated chitin structures from five different body parts were analyzed with SEM, as a result, five different types of surface morphologies were recorded. However, three different types of surface morphologies were observed only in abdomen. Maximum degradation temperatures (DTG(max)) of thorax, abdomen, legs and wings were recorded between 359 and 367 °C while DTG(max) value of head chitin was found as 308 °C.


Subject(s)
Bees/anatomy & histology , Bees/chemistry , Chitin/analysis , Animals , Chitin/isolation & purification , Chitin/ultrastructure , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...