Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 5(250): ra82, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23150881

ABSTRACT

Signaling by the serine and threonine kinase Akt (also known as protein kinase B), a pathway that is common to all eukaryotic cells, is central to cell survival, proliferation, and gene induction. We sought to elucidate the mechanisms underlying regulation of the kinase activity of Akt in the immune system. We found that the four-transmembrane protein CD37 was essential for B cell survival and long-lived protective immunity. CD37-deficient (Cd37(-/-)) mice had reduced numbers of immunoglobulin G (IgG)-secreting plasma cells in lymphoid organs compared to those in wild-type mice, which we attributed to increased apoptosis of plasma cells in the germinal centers of the spleen, areas in which B cells proliferate and are selected. CD37 was required for the survival of IgG-secreting plasma cells in response to binding of vascular cell adhesion molecule 1 to the α(4)ß(1) integrin. Impaired α(4)ß(1) integrin-dependent Akt signaling in Cd37(-/-) IgG-secreting plasma cells was the underlying cause responsible for impaired cell survival. CD37 was required for the mobility and clustering of α(4)ß(1) integrins in the plasma membrane, thus regulating the membrane distribution of α(4)ß(1) integrin necessary for activation of the Akt survival pathway in the immune system.


Subject(s)
Antigens, CD/immunology , Antigens, Neoplasm/immunology , Cell Movement/immunology , Integrin alpha4beta1/immunology , Plasma Cells/immunology , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction/immunology , Tetraspanins/immunology , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Movement/genetics , Cell Survival/genetics , Cell Survival/immunology , Germinal Center/immunology , Germinal Center/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Integrin alpha4beta1/genetics , Integrin alpha4beta1/metabolism , Mice , Mice, Knockout , Plasma Cells/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Spleen/immunology , Spleen/metabolism , Tetraspanins/genetics , Tetraspanins/metabolism
2.
J Immunol ; 185(6): 3158-66, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20709950

ABSTRACT

The cooperative nature of tetraspanin-tetraspanin interactions in membrane organization suggests functional overlap is likely to be important in tetraspanin biology. Previous functional studies of the tetraspanins CD37 and Tssc6 in the immune system found that both CD37 and Tssc6 regulate T cell proliferative responses in vitro. CD37(-/-) mice also displayed a hyper-stimulatory dendritic cell phenotype and dysregulated humoral responses. In this study, we characterize "double knockout" mice (CD37(-/-)Tssc6(-/-)) generated to investigate functional overlap between these tetraspanins. Strong evidence for a cooperative role for these two proteins was identified in cellular immunity, where both in vitro T cell proliferative responses and dendritic cell stimulation capacity are significantly exaggerated in CD37(-/-)Tssc6(-/-) mice when compared with single knockout counterparts. Despite these exaggerated cellular responses in vitro, CD37(-/-)Tssc6(-/-) mice are not more susceptible to autoimmune induction. However, in vivo responses to pathogens appear poor in CD37(-/-)Tssc6(-/-) mice, which showed a reduced ability to produce influenza-specific T cells and displayed a rapid onset hyper-parasitemia when infected with Plasmodium yoelii. Therefore, in the absence of both CD37 and Tssc6, immune function is further altered when compared with CD37(-/-) or Tssc6(-/-) mice, demonstrating a complementary role for these two molecules in cellular immunity.


Subject(s)
Antigens, CD/physiology , Antigens, Neoplasm/physiology , Dendritic Cells/immunology , Membrane Proteins/physiology , T-Lymphocyte Subsets/immunology , Amino Acid Sequence , Animals , Antigens, CD/genetics , Antigens, Neoplasm/genetics , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cells, Cultured , Dendritic Cells/metabolism , Dendritic Cells/virology , Humans , Immunophenotyping , Influenza, Human/genetics , Influenza, Human/immunology , Influenza, Human/pathology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Malaria/genetics , Malaria/immunology , Malaria/pathology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/virology , Tetraspanins
3.
PLoS Pathog ; 5(3): e1000338, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19282981

ABSTRACT

Immunoglobulin A (IgA) secretion by plasma cells in the immune system is critical for protecting the host from environmental and microbial infections. However, the molecular mechanisms underlying the generation of IgA(+) plasma cells remain poorly understood. Here, we report that the B cell-expressed tetraspanin CD37 inhibits IgA immune responses in vivo. CD37-deficient (CD37-/-) mice exhibit a 15-fold increased level of IgA in serum and significantly elevated numbers of IgA(+) plasma cells in spleen, mucosal-associated lymphoid tissue, as well as bone marrow. Analyses of bone marrow chimeric mice revealed that CD37-deficiency on B cells was directly responsible for the increased IgA production. We identified high local interleukin-6 (IL-6) production in germinal centers of CD37-/- mice after immunization. Notably, neutralizing IL-6 in vivo reversed the increased IgA response in CD37-/- mice. To demonstrate the importance of CD37-which can associate with the pattern-recognition receptor dectin-1-in immunity to infection, CD37-/- mice were exposed to Candida albicans. We report that CD37-/- mice are evidently better protected from infection than wild-type (WT) mice, which was accompanied by increased IL-6 levels and C. albicans-specific IgA antibodies. Importantly, adoptive transfer of CD37-/- serum mediated protection in WT mice and the underlying mechanism involved direct neutralization of fungal cells by IgA. Taken together, tetraspanin protein CD37 inhibits IgA responses and regulates the anti-fungal immune response.


Subject(s)
Antigens, CD/immunology , Antigens, Neoplasm/immunology , B-Lymphocytes/immunology , Cell Differentiation/immunology , Glycoproteins/immunology , Immunoglobulin A/immunology , Mycoses/immunology , Animals , Antigens, CD/genetics , Antigens, Neoplasm/genetics , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Female , Flow Cytometry , Germinal Center/immunology , Glycoproteins/genetics , Humans , Immunoglobulin A/biosynthesis , Immunohistochemistry , Interleukin-6/immunology , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction , Tetraspanins
4.
Eur J Immunol ; 39(1): 50-5, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19089816

ABSTRACT

A major question in immunology is how DC can display limited amounts of individual peptide-MHC complexes and still induce cross-linking of T-cell receptors to initiate cellular responses. One suggested mechanism is that MHC exists at the cell surface in high avidity multimers, and tetraspanin proteins, known to laterally associate with both MHC classes I and II, promote MHC multimerisation. To validate this theory, we tested the ability of DC deficient in either one of two typical tetraspanin molecules: CD37 or CD151 to present peptide to Ag-specific T cells. Surprisingly, although they exhibited no developmental or maturation defects, DC lacking either CD37 or CD151 expression were hyper-stimulatory to T cells. We demonstrate that CD37 and CD151 control DC-mediated T-cell activation by two different mechanisms: CD151 regulates co-stimulation whereas CD37 regulates peptide/MHC presentation. The implications of these results on the model suggesting that tetraspanins promote MHC multimerisation are discussed.


Subject(s)
Antigen Presentation , Antigens, CD/immunology , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Glycoproteins/immunology , Lymphocyte Activation , Animals , Antigen Presentation/genetics , Antigens, CD/genetics , Antigens, Neoplasm/genetics , Glycoproteins/genetics , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Tetraspanin 24 , Tetraspanins
5.
J Immunol ; 177(1): 372-82, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16785533

ABSTRACT

A normalized subtracted gene expression library was generated from freshly isolated mouse dendritic cells (DC) of all subtypes, then used to construct cDNA microarrays. The gene expression profiles of the three splenic conventional DC (cDC) subsets were compared by microarray hybridization and two genes encoding signal regulatory protein beta (Sirpbeta1 and Sirpbeta4) molecules were identified as differentially expressed in CD8(-) cDC. Genomic sequence analysis revealed a third Sirpbeta member localized in the same gene cluster. These Sirpbeta genes encode cell surface molecules containing extracellular Ig domains and short intracytoplasmic domains that have a charged amino acid in the transmembrane region which can potentially interact with ITAM-bearing molecules to mediate signaling. Indeed, we demonstrated interactions between Sirpbeta1 and beta2 with the ITAM-bearing signaling molecule Dap12. Real-time PCR analysis showed that all three Sirpbeta genes were expressed by CD8(-) cDC, but not by CD8(+) cDC or plasmacytoid pre-DC. The related Sirpalpha gene showed a similar expression profile on cDC subtypes but was also expressed by plasmacytoid pre-DC. The differential expression of Sirpalpha and Sirpbeta1 molecules on DC was confirmed by staining with mAbs, including a new mAb recognizing Sirpbeta1. Cross-linking of Sirpbeta1 on DC resulted in a reduction in phagocytosis of Leishmania major parasites, but did not affect phagocytosis of latex beads, perhaps indicating that the regulation of phagocytosis by Sirpbeta1 is a ligand-dependent interaction. Thus, we postulate that the differential expression of these molecules may confer the ability to regulate the phagocytosis of particular ligands to CD8(-) cDC.


Subject(s)
CD8 Antigens , Dendritic Cells/immunology , Gene Expression Regulation , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/genetics , Amino Acid Sequence , Animals , Base Sequence , CD8 Antigens/metabolism , Dendritic Cells/metabolism , Female , Gene Expression Regulation/immunology , Gene Library , Mice , Mice, Inbred C57BL , Molecular Sequence Data , NIH 3T3 Cells , Oligonucleotide Array Sequence Analysis , Rats , Rats, Wistar , Signal Transduction/immunology , Spleen/cytology , Spleen/immunology , Spleen/metabolism
6.
DNA Seq ; 17(1): 8-14, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16753812

ABSTRACT

The epidermal growth factor-transmembrane seven (EGF-TM7) family are proteins that express EGF-like domains at their extracellular N-terminus coupled to a classical seven transmembrane (TM7) cassette. Recently, we identified, in mice, a novel member of this family termed FIRE (EMR-4). Here, we present the structure of the mouse and human FIRE genes. The structures of the two genes are strikingly similar, with the positions of the introns, relative to the deduced protein sequences, highly conserved. Moreover, the gene structures are typical of other members of the EGF-TM7 family. Other researchers have identified a point deletion in exon eight of the human FIRE gene, which introduces a frame shift into the cDNA leading to a premature stop codon. Thus, human FIRE is predicted to be expressed only as a soluble protein; even though sequence potentially encoding the TM7 cassette is found in a separate open reading frame of the same mRNA transcript. We explored the possibility that a cell surface expressed form of human FIRE did exist, either as an allelic variant, or as an alternatively spliced transcript. Although, we did identify two alternatively spliced human FIRE transcripts, neither are predicted to express the TM7 cassette. Thus if human FIRE exists, it is likely to be expressed as a soluble secreted molecule.


Subject(s)
Epidermal Growth Factor/genetics , Receptors, G-Protein-Coupled/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Gene Expression Profiling , Genetic Variation , Humans , Mice , Molecular Sequence Data , Polymerase Chain Reaction , Protein Isoforms , Sequence Analysis, DNA , Sequence Analysis, Protein
7.
Int Immunol ; 18(5): 741-53, 2006 May.
Article in English | MEDLINE | ID: mdl-16569675

ABSTRACT

CIRE/mDC-SIGN is a C-type lectin we originally identified as a molecule differentially expressed by mouse dendritic cell (DC) populations. Immunostaining with a CIRE/mDC-SIGN-specific mAb revealed that CIRE/mDC-SIGN is indeed on the surface of some CD4+, CD4- 8- DCs and plasmacytoid pre-DCs, but not on CD8+ DCs. It has been proposed that CIRE/mDC-SIGN is the functional orthologue of human DC-SIGN (hDC-SIGN), a molecule that both enhances T cell responses and facilitates antigen uptake. We assessed if CIRE/mDC-SIGN and hDC-SIGN exhibit functional similarities. CIRE/mDC-SIGN is down-regulated upon activation, but unlike hDC-SIGN, incubation with IL-4 and IL-13 did not enhance CIRE/mDC-SIGN expression, indicating differences in gene regulation. Like hDC-SIGN, CIRE/mDC-SIGN bound mannosylated residues. However, we could detect no role for CIRE/mDC-SIGN in T cell-DC interactions and the protein did not bind to pathogens known to interact with hDC-SIGN, including Leishmania mexicana, cytomegalovirus, HIV and lentiviral particles bearing the Ebolavirus glycoprotein. The binding of CIRE/mDC-SIGN to hDC-SIGN ligands was not rescued when CIRE/mDC-SIGN was engineered to express the stalk region of hDC-SIGN. We conclude that there are significant differences in the fine specificity of the C-type lectin domains of hDC-SIGN and CIRE/mDC-SIGN and that these two molecules may not be functional orthologues.


Subject(s)
Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , Lectins, C-Type/immunology , Receptors, Cell Surface/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , CHO Cells , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/metabolism , Cricetinae , Dendritic Cells/metabolism , Humans , Lectins, C-Type/biosynthesis , Lectins, C-Type/metabolism , Ligands , Mannose/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Molecular Sequence Data , Protein Binding , Rats , Rats, Wistar , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/metabolism
8.
J Immunol ; 172(5): 2953-61, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14978098

ABSTRACT

CD37 is a leukocyte-specific protein belonging to the tetraspanin superfamily. Previously thought to be predominantly a B cell molecule, CD37 is shown in this study to regulate T cell proliferation. CD37-deficient (CD37(-/-)) T cells were notably hyperproliferative in MLR, in response to Con A, or CD3-TCR engagement particularly in the absence of CD28 costimulation. Hyperproliferation was not due to differences in memory to naive T cell ratios in CD37(-/-) mice, apoptosis, or TCR down-modulation. Division cycle analyses revealed CD37(-/-) T cells to enter first division earlier than wild-type T cells. Importantly, proliferation of CD37(-/-) T cells was preceded by enhanced early IL-2 production. We hypothesized CD37 to be involved in TCR signaling and this was supported by the observation that CD4/CD8-associated p56(Lck) kinase activity was increased in CD37(-/-) T cells. Remarkably, CD37 cross-linking on human T cells transduced signals that led to complete inhibition of CD3-induced proliferation. In the presence of CD28 costimulation, CD37 engagement still significantly reduced proliferation. Taken together, these results demonstrate a regulatory role for CD37 in T cell proliferation by influencing early events of TCR signaling.


Subject(s)
Antigens, CD/physiology , Antigens, Neoplasm/physiology , Glycoproteins/physiology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Apoptosis/genetics , Apoptosis/immunology , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/enzymology , CD8-Positive T-Lymphocytes/enzymology , Cell Division/genetics , Cell Division/immunology , Cell Separation , Cytokines/biosynthesis , Down-Regulation/genetics , Down-Regulation/immunology , Glycoproteins/deficiency , Glycoproteins/immunology , Glycoproteins/metabolism , Growth Inhibitors/immunology , Growth Inhibitors/metabolism , Humans , Immunologic Memory/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptor-CD3 Complex, Antigen, T-Cell/antagonists & inhibitors , Receptor-CD3 Complex, Antigen, T-Cell/biosynthesis , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocyte Subsets/enzymology , T-Lymphocyte Subsets/metabolism , Tetraspanins , Up-Regulation/genetics , Up-Regulation/immunology
9.
Breast Cancer Res Treat ; 79(3): 399-407, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12846424

ABSTRACT

Estrogen biosynthesis from C19 steroids is catalyzed by aromatase cytochrome P450. Aromatase is expressed in breast adipose tissue through the use of a distal, cytokine-responsive promoter (promoter I.4). Breast tumors, however, secrete soluble factors that over-stimulate aromatase expression through an alternative proximal cAMP-responsive promoter, promoter II. We have mapped the cAMP-responsive regions of promoter II by transient transfection of 3T3-L1 preadipocytes with aromatase promoter II reporter genes. 5' deletion and mutation analyses identified two cAMP response element (CRE)-like sequences (CRE1 and CRE2) that were essential for cAMP-induced promoter II activity. Electrophoretic mobility shift analysis demonstrated that CRE binding protein (CREB) bound to each element, and that this interaction was enhanced in the presence of cAMP. Quantification of CREB mRNA expression in adipose tissue from normal and tumor bearing breast adipose tissue revealed that CREB expression is approximately five times higher in tumor bearing than in normal breast adipose tissue. Thus, the over expression of aromatase in adipose tissue surrounding breast tumors could arise through increases in both CREB expression and CREB transcriptional activity. Pharmacological inhibition of CREB activity, previously shown to have anti-proliferative effects on cancer cells, might therefore have additional benefits through inhibition of aromatase expression and thus estrogen production in breast adipose.


Subject(s)
Adipose Tissue/enzymology , Aromatase/biosynthesis , Breast Neoplasms/enzymology , Breast/enzymology , Cyclic AMP Response Element-Binding Protein/pharmacology , Adipose Tissue/physiology , Breast/physiology , Breast Neoplasms/physiopathology , Cell Culture Techniques , Cyclic AMP , Electrophoresis , Estrogens/biosynthesis , Female , Humans , Promoter Regions, Genetic/genetics , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...