Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
PLoS One ; 11(4): e0154081, 2016.
Article in English | MEDLINE | ID: mdl-27100681

ABSTRACT

In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology.


Subject(s)
Arabidopsis/metabolism , Peptides/metabolism , Recombinant Fusion Proteins/metabolism , Serum Albumin, Bovine/administration & dosage , Amino Acid Sequence , Molecular Weight , Organelles/metabolism , Peptides/chemistry , Recombinant Fusion Proteins/chemistry
2.
J Zhejiang Univ Sci B ; 12(11): 915-22, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22042656

ABSTRACT

In this study, freeze-dried water extract from the leaves of Myristica fragrans (Houtt.) was tested for mutagenic and antimutagenic potentials using the Allium cepa assay. Freeze-dried water extract alone and its combination with cyclophosphamide (CP) (50 mg/kg) were separately dissolved in tap water at 500, 1000, 2000, and 4000 mg/kg. Onions (A. cepa) were suspended in the solutions and controls for 48 h in the dark. Root tips were prepared for microscopic evaluation. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals' scavenging power of the extract was tested using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as standards. Water extract of Myristica fragrans scavenged free radicals better than BHA, but worse than BHT. The extract alone, as well as in combination with CP suppressed cell division, and induced chromosomal aberrations that were insignificantly different from the negative control (P ≤ 0.05). However, cytotoxic and mutagenic actions of CP were considerably suppressed. The observed effects on cell division and chromosomes of A. cepa may be principally connected to the antioxidant properties of the extract. The obtained results suggest mitodepressive and antimutagenic potentials of water extract of the leaves of M. fragrans as desirable properties of a promising anticancer agent.


Subject(s)
Allium/drug effects , Antineoplastic Agents/toxicity , Antioxidants/pharmacology , Chromosome Aberrations/drug effects , Cyclophosphamide/toxicity , Mitosis/physiology , Myristica/chemistry , Plant Extracts/pharmacology , Allium/genetics , Antioxidants/isolation & purification , Biphenyl Compounds/chemistry , Cell Division/drug effects , Chromosome Aberrations/chemically induced , Picrates/chemistry , Plant Extracts/isolation & purification
3.
Electron. j. biotechnol ; 8(1): 09-16, Apr. 2005. ilus
Article in English | LILACS | ID: lil-448777

ABSTRACT

Biotechnology education in developing nations remains one of the rate limiting factors in achieving optimal human resource capacity to drive and tap the bio-resources of these nations. Many developing countries are situated within rich bio-diversity enclaves. Biotechnology offers the promise of tapping these bio resources towards due process of developing these nations. While there may be a steady stream of biology and biotechnology based graduates, from Malaysian as well as foreign universities contributing to the human resource base for these countries, the numbers and knowledge diversity produced, still lack the capacity to optimally power research and development as well as supply the industrial biotechnology sectors of these countries. Realizing the need to address these issues at the grassroots level of higher education, Malaysia has taken an active step of bringing biotechnology into the classrooms of high schools throughout the country. These future generations of Malaysians, are hoped to progress towards manning and driving Malaysia's BioValley initiatives (a biotech based R&D and industry cluster), towards the national dream of developed nation status by the year 2020, using biotechnology as an economic growth vehicle. Here, we share our experiences in developing and proliferating a biotechnology awareness program for Malaysian high schools. It is hoped that similar programs will strive towards similar objectives in other developing countries.


Subject(s)
Biotechnology/education , Schools, Medical , Awareness , Developing Countries , Malaysia
SELECTION OF CITATIONS
SEARCH DETAIL
...