Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 9494, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31263171

ABSTRACT

Landscape genetics is increasingly being used in landscape planning for biodiversity conservation by assessing habitat connectivity and identifying landscape barriers, using intraspecific genetic data and quantification of landscape heterogeneity to statistically test the link between genetic variation and landscape variability. In this study we used genetic data to understand how landscape features and environmental factors influence demographic connectedness in Europe's largest brown bear population and to assist in mitigating planned infrastructure development in Romania. Model-based clustering inferred one large and continuous bear population across the Carpathians suggesting that suitable bear habitat has not become sufficiently fragmented to restrict movement of individuals. However, at a finer scale, large rivers, often located alongside large roads with heavy traffic, were found to restrict gene flow significantly, while eastern facing slopes promoted genetic exchange. Since the proposed highway infrastructure development threatens to fragment regions of the Carpathians where brown bears occur, we develop a decision support tool based on models that assess the landscape configuration needed for brown bear conservation using wildlife corridor parameters. Critical brown bear corridors were identified through spatial mapping and connectivity models, which may be negatively influenced by infrastructure development and which therefore require mitigation. We recommend that current and proposed infrastructure developments incorporate these findings into their design and where possible avoid construction measures that may further fragment Romania's brown bear population or include mitigation measures where alternative routes are not feasible.


Subject(s)
Biodiversity , Gene Flow , Models, Genetic , Ursidae/genetics , Animals , Romania
2.
Sci Total Environ ; 609: 497-505, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28755599

ABSTRACT

Even though pedunculate oak (Quercus robur L.) and grayish oak (Quercus pedunculiflora K. Koch) have different ecological requirements, they have been considered as having low differentiation at the level of morphological traits and genetic variation. The leaf morphology for 862 trees has been assessed in 16 natural populations, seven of Q. robur, eight of Q. pedunculiflora and a mixed forest were both taxa coexist. In total, fifteen descriptors have been analysed by using discriminant analysis, while it was found that with only four out of the fifteen leaf traits (abaxial pubescence, abaxial colour of the leaf, petiole length and basal shape of lamina) the two taxa could be clearly differentiated. A dendrogram has been constructed on the basis of these traits, where the populations of each taxon have been clustered together. PU and CL traits of Q. pedunculiflora were discussed for their adaptive value for drought resistance in the steppe habitats occupied by this taxon. Using the leaves' morphological descriptors and data from the literature, intra-taxonomic units (varieties, forms and sub-forms) have been identified in all analysed populations. Eight intraspecific units for Q. robur and six for Q. pedunculiflora have been identified in the investigated area. An analysis of spatial distribution of the two taxa and of their intraspecific units has been performed using maps of ecoregions for the study area.


Subject(s)
Genetics, Population , Plant Leaves/anatomy & histology , Quercus/classification , Genetic Variation , Romania , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...