Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37628632

ABSTRACT

Mucopolysaccharidosis-plus syndrome (MPSPS) is an autosomal-recessive disorder caused by c.1492C>T (p.R498W) in the VPS33A gene. MPSPS is a severe disorder that causes a short lifespan in patients. Currently, there is no specific treatment for patients. The Yakut population is more prone to this disease than others. Diagnosing MPSPS relies on clinical manifestations, and genetic testing (GT) is used to confirm the diagnosis. In this research, we examined two pregnancy cases, one of which involved a prenatal diagnosis for MPSPS. Notably, neither pregnant woman had a known family history of the disorder. During their pregnancies, both women underwent prenatal ultrasonography, which revealed increased prenasal thickness during the second trimester. In the first case, ultrasonography indicated increased prenasal thickness in the second trimester, but a definitive diagnosis was not made at that time. The patient was eventually diagnosed with MPSPS at 11 months of age. On the contrary, in the second case, GT uncovered that the parents were carriers of MPSPS. Consequently, a placental biopsy was performed, leading to an early diagnosis of MPSPS. This study emphasizes the importance of ultrasonography findings in prenatal MPSPS diagnosis. Combining ultrasonography with GT can be a valuable approach to confirming MPSPS at an early stage, allowing for the appropriate planning of delivery methods and medical care. Ultimately, this comprehensive approach can significantly enhance the quality of life of both affected patients and their parents.


Subject(s)
Mucopolysaccharidoses , Quality of Life , Pregnancy , Humans , Female , Placenta , Prenatal Diagnosis , Genetic Testing
2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982718

ABSTRACT

We report a case of an eight-year-old boy with mucopolysaccharidosis (MPS) II with atypical skin lesions of hyperpigmented streaks along Blaschko's lines. This case presented with mild symptoms of MPS such as hepatosplenomegaly, joint stiffness, and quite mild bone deformity, which was the reason for the delay in diagnosis until the age of seven years. However, he showed an intellectual disability that did not meet the diagnostic criteria for an attenuated form of MPS II. Iduronate 2-sulfatase activity was reduced. Clinical exome sequencing of DNA from peripheral blood revealed a novel pathogenic missense variant (NM_000202.8(IDS_v001):c.703C>A, p.(Pro235Thr)) in the IDS gene, which was confirmed in the mother with a heterozygous state. His brownish skin lesions differed from the Mongolian blue spots or "pebbling" of the skin that are observed in MPS II.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Male , Humans , Child , Mucopolysaccharidosis II/diagnosis , Mucopolysaccharidosis II/genetics , Iduronate Sulfatase/genetics , Skin , Mutation, Missense , Splenomegaly
3.
Hum Genome Var ; 9(1): 26, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35879281

ABSTRACT

Coffin-Siris syndrome (CSS) is a congenital disorder that is characterized by an absent/hypoplastic fifth distal phalanx, psychomotor developmental delay, and coarse facial features. One of the causative genes, ARID1B (AT-rich interactive domain-containing protein 1B), encodes components of the BAF chromatin remodeling complexes. Here, we report a case of a 3-year 8-month-old male with a novel nonsense variant (NM_001374820.1:c.4282C > T, p.(Gln1428*)) in the ARID1B gene, which was identified with whole-exome sequencing. He showed clinical symptoms of cleft soft palate, distinctive facial features (flat nasal bridge, thick eyebrows, and long eyelashes), right cryptorchidism, and hypertrichosis that partially overlapped with CSS. One of the most characteristic features of CSS is absent/hypoplastic fifth distal phalanx. He showed no obvious clinical finding in the lengths of his fingers or in the formation of his fingernails. However, radiographic analyses of the metacarpophalangeal bones revealed shortening of all the distal phalanges and fifth middle phalanges, suggesting brachydactyly. We performed mRNA analyses and revealed that both nonsense-mediated decay and nonsense-associated altered splicing were simultaneously caused by the c.4282C > T nonsense variant. The proband's clinical manifestations fit the previously reported criteria of disease for CSS or intellectual disability with ARID1B variant. Altogether, we suggest that c.4282C > T is a pathogenic variant that causes this clinical phenotype.

4.
Int J Mol Sci ; 23(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35628659

ABSTRACT

Mucopolysaccharidoses (MPS) are rare lysosomal storage disorders (LSD) characterized by the excessive accumulation of glycosaminoglycans (GAG). Conventional MPS, caused by inborn deficiencies of lysosomal enzymes involved in GAG degradation, display various multisystemic symptoms-including progressive neurological complications, ophthalmological disorders, hearing loss, gastrointestinal and hepatobiliary issues, cardiorespiratory problems, bone and joint abnormalities, dwarfism, and coarse facial features. Mucopolysaccharidosis-Plus Syndrome (MPSPS), an autosomal recessive disease caused by a mutation in the endo-lysosomal tethering protein VPS33A, shows additional renal and hematopoietic abnormalities ("Plus symptoms") uncommon in conventional MPS. Here, we analyze data from biochemical, histological, and physical examinations-particularly of blood counts and kidney function-to further characterize the clinical phenotype of MPSPS. A series of blood tests indicate hematopoietic symptoms including progressive anemia and thrombocytopenia, which correlate with histological observations of hypoplastic bone marrow. High urinary excretion of protein (caused by impairments in renal filtration), hypoalbuminemia, and elevated levels of creatinine, cholesterol, and uric acid indicate renal dysfunction. Histological analyses of MPSPS kidneys similarly suggest the extensive destruction of glomerular structures by foamy podocytes. Height and weight did not significantly deviate from the average, but in some cases, growth began to decline at around six months or one year of age.


Subject(s)
Eye Diseases , Hematologic Diseases , Mucopolysaccharidoses , Glycosaminoglycans/metabolism , Hematologic Diseases/complications , Humans , Mucopolysaccharidoses/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...