Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 23(4): 4736-50, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836510

ABSTRACT

To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

2.
Opt Express ; 21(13): 16075-85, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23842395

ABSTRACT

A scalable and tolerant optical interfacing method based on flip-chip bonding is developed for silicon photonics packaging. Bidirectional optical couplers between multiple silicon-on-insulator waveguides and single-mode polymer waveguides are designed and fabricated. Successful operation is verified experimentally in the 1530-1570 nm spectral window. At the wavelength of 1570 nm, the coupling loss is as low as 0.8 dB for both polarization states and the planar misalignment loss is less than 0.6 dB for TE and 0.3 dB for TM polarization in a lateral silicon-polymer waveguide offset range of ± 2 µm. The coupling loss does not exhibit any temperature dependence up to the highest measurement point of 70°C.

3.
Opt Express ; 16(6): 3537-45, 2008 Mar 17.
Article in English | MEDLINE | ID: mdl-18542446

ABSTRACT

We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit voltage, short circuit current, fill factor, and solar conversion efficiency in the ultraviolet. Hybridizing (CdSe)ZnS core-shell quantum dots of 2.4 nm in diameter on multi-crystalline Si solar cells for the first time, we show that the solar conversion efficiency is enhanced 2 folds under white light illumination similar to the solar spectrum. Such nanocrystal scintillators provide the ability to extend the photovoltaic activity towards UV.


Subject(s)
Electric Power Supplies , Quantum Dots , Scintillation Counting/instrumentation , Solar Energy , Equipment Design , Equipment Failure Analysis , Scintillation Counting/methods , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...