Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 21(3): 545-552, 2019 03.
Article in English | MEDLINE | ID: mdl-30214071

ABSTRACT

PURPOSE: Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS: Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS: We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION: Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.


Subject(s)
Microcephaly/genetics , Microcephaly/physiopathology , Adult , Child , Child, Preschool , Dwarfism/genetics , Female , Genomics/methods , Genotype , Humans , Infant , Infant, Newborn , Male , Mutation/genetics , Pedigree , Phenotype , Exome Sequencing/methods
2.
Genet Med ; 20(12): 1609-1616, 2018 12.
Article in English | MEDLINE | ID: mdl-29620724

ABSTRACT

PURPOSE: To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized. METHODS: Detailed phenotyping and next-generation sequencing (panel and exome). RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average. CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.


Subject(s)
Exome/genetics , Genetic Heterogeneity , Genetic Predisposition to Disease , Musculoskeletal Abnormalities/genetics , Alleles , Blood Proteins/genetics , Carboxylic Ester Hydrolases , Cohort Studies , Exoribonucleases/genetics , Female , Fetal Proteins/genetics , Founder Effect , Genetics, Population , High-Throughput Nucleotide Sequencing , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Musculoskeletal Abnormalities/classification , Musculoskeletal Abnormalities/pathology , Neoplasm Proteins/genetics , Oncogene Proteins/genetics , Phenotype , Receptors, Cell Surface/genetics , Wnt3A Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...