Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Biochimie ; 219: 118-129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37993054

ABSTRACT

Breast cancer is the most prevalent cancer in women. Metabolic abnormalities, particularly increased lipid synthesis and uptake, impact the onset and progression of the disease. However, the influence of lipid metabolism in breast cancer varies according to the disease stage and patient's hormone status. In postmenopausal patients, obesity is associated with a higher risk and poor prognosis of luminal tumors, while in premenopausal individuals, it is correlated to BRCA mutated tumors. In fact, the tumor's lipid profile may be used to distinguish between HER2+, luminal and BRCA-mutated tumors. Moreover, drug resistance was associated with increased fatty acid synthesis and alterations in membrane composition, impacting its fluidity and spatial subdomains such as lipid rafts. Here, we discuss the subtype-specific lipid metabolism alterations found in breast cancer and the potentiality of its modulation in a clinical setting.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/metabolism , Lipids , Obesity/complications , Receptor, ErbB-2/metabolism , Receptors, Progesterone/metabolism , Signal Transduction
2.
Retina ; 43(2): 263-274, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36223778

ABSTRACT

PURPOSE: To assess the safety of injecting human embryonic stem cell retinal pigment epithelial cell dose to treat Stargardt disease. METHODS: In this prospective, Phase I clinical trial, human embryonic stem cell retinal pigment epithelial cells in suspension were injected into the subretinal space in eyes with the worse best-corrected visual acuity (BCVA). After vitrectomy/posterior hyaloid removal, a partial retinal detachment was created and the human embryonic stem cell retinal pigment epithelial cells were administered. Phacoemulsification with intraocular lens implantation was performed in eyes with lens opacity. All procedures were optical coherence tomography-guided. The 12-month follow-up included retinal imaging, optical coherence tomography, visual field/electrophysiologic testing, and systemic evaluation. The main outcome was the absence of ocular/systemic inflammation or rejection, tumor formation, or toxicity during follow-up. RESULTS: The mean baseline BCVAs in the phacoemulsification and no phacoemulsification groups were similar (1.950 ± 0.446 and 1.575 ± 0.303, respectively). One year postoperatively, treated eyes showed a nonsignificant increase in BCVA. No adverse effects occurred during follow-up. Intraoperative optical coherence tomography was important for guiding all procedures. CONCLUSION: This surgical procedure was feasible and safe without cellular migration, rejection, inflammation, or development of ocular or systemic tumors during follow-up.


Subject(s)
Retinal Detachment , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/pathology , Stargardt Disease , Prospective Studies , Retinal Detachment/pathology , Stem Cells , Inflammation , Retinal Pigments , Tomography, Optical Coherence
3.
Soft Matter ; 17(48): 10926-10934, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34811564

ABSTRACT

The formation of hydrogels by photosensitized oxidation and crosslinking of histidine-derived polymers is demonstrated for the first time. The photooxidation of pendant His mediated by singlet oxygen was used to promote covalent coupling by its dimerization. As a proof-of-concept, two systems were studied: (i) chondroitin sulfate (CS) functionalized with His, and (ii) an elastin-like peptide (ELP) containing His produced by recombinant techniques. Both materials were crosslinked by irradiation at 425 nm in the presence of Zn-porphyrin derivatives yielding His-based hydrogels. The molecular structure and physicochemical properties of ELP-His and other 5 ELPs with photooxidizable amino acids were studied in silica by computer simulation. A correlation between the protein conformation and its elastic properties is discussed. CS-His hydrogels demonstrate larger storage moduli than ELPs with other amino acids. The obtained results show the potential use of photooxidation to create a new type of His-based hydrogels.


Subject(s)
Histidine , Hydrogels , Computer Simulation , Elastin , Oxygen , Singlet Oxygen
4.
Mol Biol Rep ; 48(2): 1985-1994, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33619662

ABSTRACT

Reck (REversion-inducing Cysteine-rich protein with Kazal motifs) tumor suppressor gene encodes a multifunctional glycoprotein which inhibits the activity of several matrix metalloproteinases (MMPs), and has the ability to modulate the Notch and canonical Wnt pathways. Reck-deficient neuro-progenitor cells undergo precocious differentiation; however, modulation of Reck expression during progression of the neuronal differentiation process is yet to be characterized. In the present study, we demonstrate that Reck expression levels are increased during in vitro neuronal differentiation of PC12 pheochromocytoma cells and P19 murine teratocarcinoma cells and characterize mouse Reck promoter activity during this process. Increased Reck promoter activity was found upon induction of differentiation in PC12 cells, in accordance with its increased mRNA expression levels in mouse in vitro models. Interestingly, Reck overexpression, prior to the beginning of the differentiation protocol, led to diminished efficiency of the neuronal differentiation process. Taken together, our findings suggest that increased Reck expression at early stages of differentiation diminishes the number of neuron-like cells, which are positive for the beta-3 tubulin marker. Our data highlight the importance of Reck expression evaluation to optimize in vitro neuronal differentiation protocols.


Subject(s)
GPI-Linked Proteins/metabolism , Genes, Tumor Suppressor , Neurogenesis/genetics , Teratocarcinoma/metabolism , Animals , Binding Sites , Flow Cytometry , GPI-Linked Proteins/genetics , Gene Expression Regulation, Neoplastic/genetics , Mice , PC12 Cells , Promoter Regions, Genetic , Rats , Real-Time Polymerase Chain Reaction , Teratocarcinoma/genetics , Tubulin/metabolism , Up-Regulation
5.
Cell Mol Neurobiol ; 41(4): 619-649, 2021 May.
Article in English | MEDLINE | ID: mdl-32468442

ABSTRACT

The Autism Spectrum Disorder (ASD) consists of a prevalent and heterogeneous group of neurodevelopmental diseases representing a severe burden to affected individuals and their caretakers. Despite substantial improvement towards understanding of ASD etiology and pathogenesis, as well as increased social awareness and more intensive research, no effective drugs have been successfully developed to resolve the main and most cumbersome ASD symptoms. Hence, finding better treatments, which may act as "disease-modifying" agents, and novel biomarkers for earlier ASD diagnosis and disease stage determination are needed. Diverse mutations of core components and consequent malfunctions of several cell signaling pathways have already been found in ASD by a series of experimental platforms, including genetic associations analyses and studies utilizing pre-clinical animal models and patient samples. These signaling cascades govern a broad range of neurological features such as neuronal development, neurotransmission, metabolism, and homeostasis, as well as immune regulation and inflammation. Here, we review the current knowledge on signaling pathways which are commonly disrupted in ASD and autism-related conditions. As such, we further propose ways to translate these findings into the development of genetic and biochemical clinical tests for early autism detection. Moreover, we highlight some putative druggable targets along these pathways, which, upon further research efforts, may evolve into novel therapeutic interventions for certain ASD conditions. Lastly, we also refer to the crosstalk among these major signaling cascades as well as their putative implications in therapeutics. Based on this collective information, we believe that a timely and accurate modulation of these prominent pathways may shape the neurodevelopment and neuro-immune regulation of homeostatic patterns and, hopefully, rescue some (if not all) ASD phenotypes.


Subject(s)
Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/metabolism , Molecular Targeted Therapy , Signal Transduction , Animals , Autism Spectrum Disorder/epidemiology , Cell Survival , Cytokines/metabolism , Humans , Metabolic Networks and Pathways
6.
Article in English | MEDLINE | ID: mdl-31646003

ABSTRACT

BACKGROUND: The World Health Organization (WHO) estimates that the number of individuals who lose their vision due to retinal degeneration is expected to reach 6 million annually in 2020. The retinal degenerative diseases affect the macula, which is responsible for central and detailed vision. Most macular degeneration, i.e., age-related macular degeneration (AMD) develops in the elderly; however, certain hereditary diseases, such as the Stargardt disease, also affect young people. This degeneration begins with loss of retinal pigmented epithelium (RPE) due to formation of drusen (atrophic) or abnormal vessels (exudative). In wet AMD, numerous drugs are available to successful treat the disease; however, no proven therapy currently is available to treat dry AMD or Stargardt. Since its discovery, human embryonic stem cells (hESCs) have been considered a valuable therapeutic tool. Some evidence has shown that transplantation of RPEs differentiated from hESCs cells can result in recovery of both RPE and photoreceptors and prevent visual loss. METHODS: The human embryonic WA-09 stem cell lineage was cultured under current Good Manufacturing Practices (cGMP) conditions using serum-free media and supplements. The colonies were isolated manually and allowed to spontaneously differentiate into RPE cells. RESULTS: This simple and effective protocol required minimal manipulation and yielded more than 10e8 RPE cells by the end of the differentiation and enrichment processes, with cells exhibiting a cobblestone morphology and displaying cellular markers and a gene expression profile typical of mature RPE cells. Moreover, the differentiated cells displayed phagocytic activity and only a small percentage of the total cells remained positive for the Octamer-binding transcriptions factor 4 (OCT-4) pluripotency cell marker. CONCLUSIONS: These results showed that functional RPE cells can be produced efficiently and suggested the possibility of scaling-up to aim at therapeutic protocols for retinal diseases associated with RPE degeneration.

7.
Mol Med ; 25(1): 41, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31455237

ABSTRACT

BACKGROUND: Peritoneal fibrosis (PF) represents a long-term complication of peritoneal dialysis (PD), affecting peritoneal membrane (PM) integrity and function. Understanding the mechanisms underlying PF development in an uremic environment aiming alternative therapeutic strategies for treating this process is of great interest. The aim of this study was to analyze the effects of tamoxifen (TAM) and recombinant BMP7 (rBMP7) in an experimental model of PF developed in uremic rats. METHODS: To mimic the clinical situation of patients on long-term PD, a combo model, characterized by the combination of PF and CKD with severe uremia, was developed in Wistar rats. PF was induced by intraperitoneal (IP) injections of chlorhexidine gluconate (CG), and CKD was induced by an adenine-rich diet. Uremia was confirmed by severe hypertension, increased blood urea nitrogen (BUN> 120 mg/dL) and serum creatinine levels (> 2 mg/dL). Uremic rats with PF were treated with TAM (10 mg/Kg by gavage) or BMP7 (30 µg/Kg, IP). Animals were followed up for 30 days. RESULTS: CG administration in uremic rats induced a striking increase in PM thickness, neoangiogenesis, demonstrated by increased capillary density, and failure of ultrafiltration capacity. These morphological and functional changes were blocked by TAM or rBMP7 treatment. In parallel, TAM and rBMP7 significantly ameliorated the PM fibrotic response by reducing α-SMA, extracellular matrix proteins and TGF-ß expression. TAM or rBMP7 administration significantly inhibited peritoneal Smad3 expression in uremic rats with PF, prevented Smad3 phosphorylation, and induced a remarkable up-regulation of Smad7, an intracellular inhibitor of TGFß/Smad signaling, contributing to a negative modulation of profibrotic genes. Both treatments were also effective in reducing local inflammation, possibly by upregulating IκB-α expression in the PM of uremic rats with PF. In vitro experiments using primary peritoneal fibroblasts activated by TGF-ß confirmed the capacity of TAM or rBMP7 in blocking inflammatory mediators, such as IL-1ß expression. CONCLUSIONS: In conclusion, these findings indicate important roles of TGF-ß/Smad signaling in PF aggravated by uremia, providing data regarding potential therapeutic approaches with TAM or rBMP7 to block this process.


Subject(s)
Bone Morphogenetic Protein 7/pharmacology , Inflammation/metabolism , Peritoneal Fibrosis/metabolism , Tamoxifen/pharmacology , Uremia/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Male , Peritoneum/cytology , Peritoneum/drug effects , Rats , Rats, Wistar , Recombinant Proteins/pharmacology , Renal Insufficiency, Chronic , Smad7 Protein , Transforming Growth Factor beta/metabolism
8.
Biosci Rep ; 39(4)2019 04 30.
Article in English | MEDLINE | ID: mdl-30837326

ABSTRACT

Innate immunity comprises several inflammation-related modulatory pathways which receive signals from an array of membrane-bound and cytoplasmic pattern recognition receptors (PRRs). The NLRs (NACHT (NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1 (telomerase-associated protein) and Leucine-Rich Repeat (LRR) domain containing proteins) relate to a large family of cytosolic innate receptors, involved in detection of intracellular pathogens and endogenous byproducts of tissue injury. These receptors may recognize pathogen-associated molecular patterns (PAMPs) and/or danger-associated molecular patterns (DAMPs), activating host responses against pathogen infection and cellular stress. NLR-driven downstream signals trigger a number of signaling circuitries, which may either initiate the formation of inflammasomes and/or activate nuclear factor κB (NF-κB), stress kinases, interferon response factors (IRFs), inflammatory caspases and autophagy. Disruption of those signals may lead to a number of pro-inflammatory conditions, eventually promoting the onset of human malignancies. In this review, we describe the structures and functions of the most well-defined NLR proteins and highlight their association and biological impact on a diverse number of cancers.


Subject(s)
Immunity, Innate , NLR Proteins/immunology , Neoplasms/immunology , Animals , Humans , Inflammasomes/immunology , Inflammation/immunology , NF-kappa B/immunology , Neoplasms/pathology , Pathogen-Associated Molecular Pattern Molecules/immunology , Receptors, Pattern Recognition/immunology
9.
BMC Genomics ; 20(1): 152, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30791886

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is a malignancy with very poor prognosis, due to its aggressive clinical characteristics and lack of response to receptor-targeted drug therapy. In TNBC, immune-related pathways are typically upregulated and may be associated with a better prognosis of the disease, encouraging the pursuit for immunotherapeutic options. A number of immune-related molecules have already been associated to the onset and progression of breast cancer, including NOD1 and NOD2, innate immune receptors of bacterial-derived components which activate pro-inflammatory and survival pathways. In the context of TNBC, overexpression of either NOD1or NOD2 is shown to reduce cell proliferation and increase clonogenic potential in vitro. To further investigate the pathways linking NOD1 and NOD2 signaling to tumorigenesis in TNBC, we undertook a global proteome profiling of TNBC-derived cells ectopically expressing each one of these NOD receptors. RESULTS: We have identified a total of 95 and 58 differentially regulated proteins in NOD1- and NOD2-overexpressing cells, respectively. We used bioinformatics analyses to identify enriched molecular signatures aiming to integrate the differentially regulated proteins into functional networks. These analyses suggest that overexpression of both NOD1 and NOD2 may disrupt immune-related pathways, particularly NF-κB and MAPK signaling cascades. Moreover, overexpression of either of these receptors may affect several stress response and protein degradation systems, such as autophagy and the ubiquitin-proteasome complex. Interestingly, the levels of several proteins associated to cellular adhesion and migration were also affected in these NOD-overexpressing cells. CONCLUSIONS: Our proteomic analyses shed new light on the molecular pathways that may be modulating tumorigenesis via NOD1 and NOD2 signaling in TNBC. Up- and downregulation of several proteins associated to inflammation and stress response pathways may promote activation of protein degradation systems, as well as modulate cell-cycle and cellular adhesion proteins. Altogether, these signals seem to be modulating cellular proliferation and migration via NF-κB, PI3K/Akt/mTOR and MAPK signaling pathways. Further investigation of altered proteins in these pathways may provide more insights on relevant targets, possibly enabling the immunomodulation of tumorigenesis in the aggressive TNBC phenotype.


Subject(s)
Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/genetics , Proteome , Proteomics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cell Proliferation , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods , Transcriptome , Triple Negative Breast Neoplasms/pathology
10.
J Cell Physiol ; 233(6): 4907-4918, 2018 06.
Article in English | MEDLINE | ID: mdl-29215714

ABSTRACT

Photobiomodulation (PBM) therapy displays relevant properties for tissue healing and regeneration, which may be of interest for the tissue engineering field. Here, we show that PBM is able to improve cell survival and to interact with recombinant human Bone Morphogenetic Protein 4 (rhBMP4) to direct and accelerate odonto/osteogenic differentiation of dental derived mesenchymal stem cells (MSCs). MSCs were encapsulated in an injectable and thermo-responsive cell carrier (Pluronic® F-127) loaded with rhBMP4 and then photoactivated. PBM improved MSCs self-renewal and survival upon encapsulation in the Pluronic® F-127. In the presence of rhBMP4, cell odonto/osteogenic differentiation was premature and markedly improved in the photoactivated MSCs. An in vivo calvarial critical sized defect model demonstrated significant increase in bone formation after PBM treatment. Finally, a balance in the reactive oxygen species levels may be related to the favorable results of PBM and rhBMP4 association. PBM may act in synergism with rhBMP4 and is a promise candidate to direct and accelerate hard tissue bioengineering.


Subject(s)
Bone Morphogenetic Protein 4/administration & dosage , Drug Carriers , Low-Level Light Therapy/methods , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/radiation effects , Poloxamer/chemistry , Tissue Engineering/methods , Tissue Scaffolds , Adolescent , Adult , Animals , Bone Morphogenetic Protein 4/chemistry , Bone Regeneration , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Self Renewal/drug effects , Cell Self Renewal/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Cells, Cultured , Humans , Hydrogels , Injections , Lasers, Semiconductor , Low-Level Light Therapy/instrumentation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Mice, Nude , NF-kappa B/metabolism , Osteogenesis/drug effects , Osteogenesis/radiation effects , Parietal Bone/injuries , Parietal Bone/pathology , Parietal Bone/surgery , Reactive Oxygen Species/metabolism , Time Factors , Young Adult
11.
Nat Neurosci ; 20(8): 1162-1171, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28671693

ABSTRACT

Microglia are essential for CNS homeostasis and innate neuroimmune function, and play important roles in neurodegeneration and brain aging. Here we present gene expression profiles of purified microglia isolated at autopsy from the parietal cortex of 39 human subjects with intact cognition. Overall, genes expressed by human microglia were similar to those in mouse, including established microglial genes CX3CR1, P2RY12 and ITGAM (CD11B). However, a number of immune genes, not identified as part of the mouse microglial signature, were abundantly expressed in human microglia, including TLR, Fcγ and SIGLEC receptors, as well as TAL1 and IFI16, regulators of proliferation and cell cycle. Age-associated changes in human microglia were enriched for genes involved in cell adhesion, axonal guidance, cell surface receptor expression and actin (dis)assembly. Limited overlap was observed in microglial genes regulated during aging between mice and humans, indicating that human and mouse microglia age differently.


Subject(s)
Aging/physiology , Brain/metabolism , CD11b Antigen/genetics , Gene Expression/genetics , Microglia/metabolism , Axons/metabolism , Cell Cycle/genetics , Gene Expression Profiling , Humans
12.
Stem Cells Transl Med ; 6(1): 161-173, 2017 01.
Article in English | MEDLINE | ID: mdl-28170177

ABSTRACT

Adult mesenchymal stromal cell-based interventions have shown promising results in a broad range of diseases. However, their use has faced limited effectiveness owing to the low survival rates and susceptibility to environmental stress on transplantation. We describe the cellular and molecular characteristics of multilineage-differentiating stress-enduring (Muse) cells derived from adipose tissue (AT), a subpopulation of pluripotent stem cells isolated from human lipoaspirates. Muse-AT cells were efficiently obtained using a simple, fast, and affordable procedure, avoiding cell sorting and genetic manipulation methods. Muse-AT cells isolated under severe cellular stress, expressed pluripotency stem cell markers and spontaneously differentiated into the three germ lineages. Muse-AT cells grown as spheroids have a limited proliferation rate, a diameter of ∼15 µm, and ultrastructural organization similar to that of embryonic stem cells. Muse-AT cells evidenced high stage-specific embryonic antigen-3 (SSEA-3) expression (∼60% of cells) after 7-10 days growing in suspension and did not form teratomas when injected into immunodeficient mice. SSEA-3+ -Muse-AT cells expressed CD105, CD29, CD73, human leukocyte antigen (HLA) class I, CD44, and CD90 and low levels of HLA class II, CD45, and CD34. Using lipopolysaccharide-stimulated macrophages and antigen-challenged T-cell assays, we have shown that Muse-AT cells have anti-inflammatory activities downregulating the secretion of proinflammatory cytokines, such as interferon-γ and tumor necrosis factor-α. Muse-AT cells spontaneously gained transforming growth factor-ß1 expression that, in a phosphorylated SMAD2-dependent manner, might prove pivotal in their observed immunoregulatory activity through decreased expression of T-box transcription factor in T cells. Collectively, the present study has demonstrated the feasibility and efficiency of obtaining Muse-AT cells that can potentially be harnessed as immunoregulators to treat immune-related disorders. Stem Cells Translational Medicine 2017;6:161-173.


Subject(s)
Adipose Tissue/pathology , Carcinogenesis/pathology , Immunomodulation , Pluripotent Stem Cells/cytology , Transforming Growth Factor beta1/pharmacology , Animals , Biomarkers/metabolism , Carcinogenesis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cytokines/metabolism , Germ Layers/cytology , Humans , Immunomodulation/drug effects , Karyotype , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation/drug effects , Pluripotent Stem Cells/transplantation , RAW 264.7 Cells , Signal Transduction/drug effects , Smad2 Protein/metabolism , Spleen/cytology , Stress, Physiological , Teratoma/pathology
13.
Oncol Lett ; 12(1): 315-322, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27347144

ABSTRACT

Hypoxia and necrosis are fundamental features of glioma, and their emergence is critical for the rapid biological progression of this fatal tumor. The presence of vaso-occlusive thrombus is higher in grade IV tumors [glioblastoma multiforme (GBM)] compared with lower grade tumors, suggesting that the procoagulant properties of the tumor contribute to its aggressive behavior, as well as the establishment of tumor hypoxia and necrosis. Tissue factor (TF), the primary cellular initiator of coagulation, is overexpressed in GBMs and likely favors a thrombotic microenvironment. Phosphatase and tensin homolog (PTEN) loss and hypoxia are two common alterations observed in glioma that may be responsible for TF upregulation. In the present study, ST1 and P7 rat glioma lines, with different levels of aggressiveness, were comparatively analyzed with the aim of identifying differences in procoagulant mechanisms. The results indicated that P7 cells display potent procoagulant activity compared with ST1 cells. Flow cytometric analysis showed less pronounced levels of TF in ST1 cells compared with P7 cells. Notably, P7 cells supported factor X (FX) activation via factor VIIa, whereas no significant FXa generation was observed in ST1 cells. Furthermore, the exposure of phosphatidylserine on the surface of P7 and ST1 cells was investigated. The results supported the assembly of prothrombinase complexes, accounting for the production of thrombin. Furthermore, reverse transcription-quantitative polymerase chain reaction showed that CoCl2 (known to induce a hypoxic-like stress) led to an upregulation of TF levels in P7 and ST1 cells. Therefore, increased TF expression in P7 cells was accompanied by increased TF procoagulant activity. In addition, hypoxia increased the shedding of procoagulant TF-bearing microvesicles in both cell lines. Finally, hypoxic stress induced by treatment with CoCl2 upregulated the expression of the PAR1 receptor in both P7 and ST1 cells. In addition to PAR1, P7, but not ST1 cells, expressed higher levels of PAR2 under hypoxic stress. Thus, modulating these molecular interactions may provide additional insights for the development of more efficient therapeutic strategies against aggressive glioma.

14.
Mol Biotechnol ; 58(6): 404-14, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27126696

ABSTRACT

Recombinant human factor VIII (rFVIII) is used in replacement therapy for hemophilia A. Current research efforts are focused on bioengineering rFVIII molecules to improve its secretion efficiency and stability, limiting factors for its efficient production. However, high expression yield in mammalian cells of these rFVIII variants is generally associated with limited proteolytic processing. Non-processed single-chain polypeptides constitute non-natural FVIII molecule configurations with unpredictable toxicity and/or antigenicity. Our main objective was to demonstrate the feasibility of promoting full-proteolytic processing of an rFVIII variant retaining a portion of the B-domain, converting it into the smallest natural activatable form of rFVIII, while keeping its main advantage, i.e., improved secretion efficiency. We generated and employed a CHO-DG44 cell clone producing an rFVIII variant retaining a portion of the B-domain and the FVIII native cleavage site between Arg(1648) and Glu(1649). By bioengineering CHO-DG44 cells to express stably the recombinant human endoproteases PACE, PACE-SOL, PCSK5, PCSK6, or PCKS7, we were able to achieve complete intra- or extracellular proteolytic processing of this rFVIII variant. Additionally, our quantitative data indicated that removal of the B-domain segment by intracellular proteolytic processing does not interfere with this rFVIII variant secretion efficiency. This work also provides the first direct evidence of (1) intracellular cleavage at the Arg(1648) FVIII processing site promoted by wild-type PACE and PCSK7 and (2) proteolytic processing at the Arg(1648) FVIII processing site by PCSK6.


Subject(s)
Factor VIII/chemistry , Factor VIII/metabolism , Furin/metabolism , Animals , CHO Cells , Cricetulus , Factor VIII/genetics , Humans , Proprotein Convertases/metabolism , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Serine Endopeptidases/metabolism , Subtilisins/metabolism
15.
BMC Cancer ; 15: 660, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26449734

ABSTRACT

BACKGROUND: The REversion-inducing Cysteine-rich protein with Kazal motif (RECK) is a well-known inhibitor of matrix metalloproteinases (MMPs) and cellular invasion. Although high expression levels of RECK have already been correlated with a better clinical outcome for several tumor types, its main function, as well as its potential prognostic value for breast cancer patients, remain unclear. METHODS: The RECK expression profile was investigated in a panel of human breast cell lines with distinct aggressiveness potential. RECK functional analysis was undertaken using RNA interference methodology. RECK protein levels were also analyzed in 1040 cases of breast cancer using immunohistochemistry and tissue microarrays (TMAs). The association between RECK expression and different clinico-pathological parameters, as well as the overall (OS) and disease-free (DFS) survival rates, were evaluated. RESULTS: Higher RECK protein expression levels were detected in more aggressive breast cancer cell lines (T4-2, MDA-MB-231 and Hs578T) than in non-invasive (MCF-7 and T47D) and non-tumorigenic (S1) cell lines. Indeed, silencing RECK in MDA-MB-231 cells resulted in elevated levels of pro-MMP-9 and increased invasion compared with scrambled (control) cells, without any effect on cell proliferation. Surprisingly, by RECK immunoreactivity analysis on TMAs, we found no association between RECK positivity and survival (OS and DFS) in breast cancer patients. Even considering the different tumor subtypes (luminal A, luminal B, Her2 type and basal-like) or lymph node status, RECK remained ineffective for predicting the disease outcome. Moreover, by multivariate Cox regression analysis, we found that RECK has no prognostic impact for OS and DFS, relative to standard clinical variables. CONCLUSIONS: Although it continues to serve as an invasion and MMP inhibitor in breast cancer, RECK expression analysis is not useful for prognosis of these patients.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , GPI-Linked Proteins/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Female , GPI-Linked Proteins/genetics , Gene Expression , Humans , Kaplan-Meier Estimate , Matrix Metalloproteinase 9/metabolism , Middle Aged , Neoplasm Grading , Prognosis , Proportional Hazards Models , Risk Factors , Tumor Burden
16.
J Diabetes Res ; 2015: 284680, 2015.
Article in English | MEDLINE | ID: mdl-26347203

ABSTRACT

The pancreas plays a central role in metabolism, allowing ingested food to be converted and used as fuel by the cells throughout the body. On the other hand, the pancreas may be affected by devastating diseases, such as pancreatitis, pancreatic adenocarcinoma (PAC), and diabetes mellitus (DM), which generally results in a wide metabolic imbalance. The causes for the development and progression of these diseases are still controversial; therefore it is essential to better understand the underlying mechanisms which compromise the pancreatic homeostasis. The interest in the study of the commensal microbiome increased extensively in recent years, when many discoveries have illustrated its central role in both human physiology and maintenance of homeostasis. Further understanding of the involvement of the microbiome during the development of pathological conditions is critical for the improvement of new diagnostic and therapeutic approaches. In the present review, we discuss recent findings on the behavior and functions played by the microbiota in major pancreatic diseases and provide further insights into its potential roles in the maintenance of pancreatic steady-state activities.


Subject(s)
Gastrointestinal Microbiome , Pancreas/physiology , Animals , Diabetes Complications/microbiology , Diabetes Mellitus/microbiology , Disease Progression , Homeostasis , Humans , Inflammation , Pancreatic Neoplasms/microbiology , Pancreatitis/microbiology , Patient Safety
17.
Reprod Biol Endocrinol ; 13: 2, 2015 Jan 11.
Article in English | MEDLINE | ID: mdl-25577427

ABSTRACT

BACKGROUND: The dmrt1 and sox9 genes have a well conserved function related to testis formation in vertebrates, and the group of fish presents a great diversity of species and reproductive mechanisms. The lambari fish (Astyanax altiparanae) is an important Neotropical species, where studies on molecular level of sex determination and gonad maturation are scarce. METHODS: Here, we employed molecular cloning techniques to analyze the cDNA sequences of the dmrt1 and sox9 genes, and describe the expression pattern of those genes during development and the male reproductive cycle by qRT-PCR, and related to histology of the gonad. RESULTS: Phylogenetic analyses of predicted amino acid sequences of dmrt1 and sox9 clustered A. altiparanae in the Ostariophysi group, which is consistent with the morphological phylogeny of this species. Studies of the gonad development revealed that ovary formation occurred at 58 days after hatching (dah), 2 weeks earlier than testis formation. Expression studies of sox9 and dmrt1 in different tissues of adult males and females and during development revealed specific expression in the testis, indicating that both genes also have a male-specific role in the adult. During the period of gonad sex differentiation, dmrt1 seems to have a more significant role than sox9. During the male reproductive cycle dmrt1 and sox9 are down-regulated after spermiation, indicating a role of these genes in spermatogenesis. CONCLUSIONS: For the first time the dmrt1 and sox9 were cloned in a Characiformes species. We show that both genes have a conserved structure and expression, evidencing their role in sex determination, sex differentiation and the male reproductive cycle in A. altiparanae. These findings contribute to a better understanding of the molecular mechanisms of sex determination and differentiation in fish.


Subject(s)
Characiformes , Gonads/growth & development , Reproduction/genetics , SOX9 Transcription Factor/genetics , Transcription Factors/genetics , Animals , Characiformes/genetics , Characiformes/growth & development , Characiformes/physiology , Cloning, Molecular , Female , Gene Expression Regulation, Developmental , Gonads/metabolism , Male , SOX9 Transcription Factor/metabolism , Sex Differentiation/genetics , Spermatogenesis/genetics , Testis/growth & development , Testis/metabolism , Transcription Factors/metabolism
18.
Materials (Basel) ; 8(2): 408-423, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-28787946

ABSTRACT

Synthetic and natural polymer association is a promising tool in tissue engineering. The aim of this study was to compare five methodologies for producing hybrid scaffolds for cell culture using poly-l-lactide (PLLA) and collagen: functionalization of PLLA electrospun by (1) dialkylamine and collagen immobilization with glutaraldehyde and by (2) hydrolysis and collagen immobilization with carbodiimide chemistry; (3) co-electrospinning of PLLA/chloroform and collagen/hexafluoropropanol (HFP) solutions; (4) co-electrospinning of PLLA/chloroform and collagen/acetic acid solutions and (5) electrospinning of a co-solution of PLLA and collagen using HFP. These materials were evaluated based on their morphology, mechanical properties, ability to induce cell proliferation and alkaline phosphatase activity upon submission of mesenchymal stem cells to basal or osteoblastic differentiation medium (ODM). Methods (1) and (2) resulted in a decrease in mechanical properties, whereas methods (3), (4) and (5) resulted in materials of higher tensile strength and osteogenic differentiation. Materials yielded by methods (2), (3) and (5) promoted osteoinduction even in the absence of ODM. The results indicate that the scaffold based on the PLLA/collagen blend exhibited optimal mechanical properties and the highest capacity for osteodifferentiation and was the best choice for collagen incorporation into PLLA in bone repair applications.

19.
Cell Transplant ; 24(2): 247-61, 2015.
Article in English | MEDLINE | ID: mdl-24256689

ABSTRACT

Pancreatic islet microencapsulation constitutes an attractive therapy for type 1 diabetes mellitus; however, long-term ß-cell function remains a major problem. Loss of extracellular matrix interactions during islet isolation dramatically affects ß-cell viability. We have previously shown beneficial effects of laminin (LN) in human islet cultures. Herein, we investigated whether LN could improve the outcome of transplantation after islet microencapsulation in Biodritin, an alginate-based material. To test LN-Biodritin stability, microcapsules were subjected to different types of in vitro stress. Focusing on biocompatibility, empty microcapsules were coincubated with the RAW 264.7 macrophage cell line for up to 24 h, and empty beads were implanted IP in mice and retrieved for analyses after 7 and 30 days. Upon culturing for 48 h, mRNA, protein levels, and caspase 3 activity were evaluated in islets microencapsulated with LN-Biodritin. Mice rendered diabetic by streptozotocin injection were transplanted with microencapsulated islets, followed by assessment of body weight, glycemia, and graft function (evaluated by OGTT). Graft efficiency was observed upon microencapsulated islet explantation. The results obtained showed that LN-Biodritin microcapsules were as stable and biocompatible as Biodritin. Modulation of mRNA and protein levels suggested protection against apoptosis and islet stress. Mice transplanted with LN-Biodritin microencapsulated islets presented a better outcome at 198 days postsurgery. Graft explantation led animals to hyperglycemia. In conclusion, LN-Biodritin constitutes a very promising biomaterial for islet transplantation.


Subject(s)
Alginates/chemistry , Biocompatible Materials/chemistry , Capsules/chemistry , Chondroitin Sulfates/chemistry , Diabetes Mellitus, Experimental/therapy , Islets of Langerhans Transplantation , Islets of Langerhans/cytology , Laminin/chemistry , Animals , Caspase 3/genetics , Caspase 3/metabolism , Cells, Cultured , Insemination, Artificial, Heterologous , Insulin/metabolism , Insulin Secretion , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred BALB C , RNA, Messenger/metabolism , Rats , Rats, Wistar , Transcriptome , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
20.
Nat Prod Commun ; 9(10): 1457-60, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25522535

ABSTRACT

Flavones have received considerable attention because of their antiproliferative properties and selective effects on cancer cells, making them good candidates for use in cancer therapy. In contrast to other flavones, little is known about the effects of the flavone core structure (2-phenyl-4H-1-benzopyran-4one) on cancer cells. Here, we report that flavone induces cell death in human hepatoma HepG2 cells. Furthermore, annexin-V+/PI- and SubG1 populations of HepG2 cells increased after flavone treatment. Exposure of HepG2 to flavone did not result in either cytochrome c release into the cytosol or changes in the mitochondrial membrane potential. Treatment of HepG2 cells with flavone for 24 h reduced the accumulation of intracellular ROS, which correlated with upregulation of Gred, CuZnSOD and MnSOD mRNA levels. Taken together, our results provided useful insights into the mechanism of cell death caused by flavones, in order to evaluate their future application in hepatocarcinoma therapy.


Subject(s)
Cell Death/drug effects , Flavones/pharmacology , Cytochromes c/metabolism , Hep G2 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...