Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 54(15): 7548-54, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26193073

ABSTRACT

Gallium arsenate dihydrate is a member of a class of isostructural compounds, with the general formula M(3+)AsO4·2H2O (M(3+) = Fe, Al, In, or Ga), which are being considered as potential solid-state storage media for the sequestration of toxic arsenic cations. We report the first high-pressure structural analysis of a metal arsenate dihydrate, namely, GaAsO4·2H2O. This compound crystallizes in the orthorhombic space group Pbca with Z = 8. Accurate unit cell parameters as a function of pressure were obtained by high-pressure single-crystal X-ray diffraction, and a bulk modulus of 51.1(3) GPa for GaAsO4·2H2O was determined from a third-order Birch-Murnaghan equation of state fit to the P-V data. Assessment of the pressure dependencies of the unit cell lengths showed that the compressibility of the structure along the axial directions increases in the order of [010] < [100] < [001]. This order was found to correlate well with the proposed compression mechanism for GaAsO4·2H2O, which involves deformation of the internal channel void spaces of the polyhedral helices that lie parallel to the [010] direction, and increased distortion of the GaO6 octahedra. The findings of the high-pressure diffraction experiment were further supported by the results from variable-pressure Raman analysis of GaAsO4·2H2O. Moreover, we propose a revised and more complex model for the hydrogen-bonding scheme in GaAsO4·2H2O, and on the basis of this revision, we reassigned the peaks in the OH stretching regions of previously published Raman spectra of this compound.


Subject(s)
Arsenates/chemistry , Arsenicals/chemistry , Elasticity , Gallium/chemistry , Pressure , Hydrogen Bonding , Models, Molecular , Molecular Conformation
2.
Sci Rep ; 5: 9487, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25820781

ABSTRACT

Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

SELECTION OF CITATIONS
SEARCH DETAIL
...