Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Lancet Oncol ; 18(11): 1523-1531, 2017 11.
Article in English | MEDLINE | ID: mdl-29055736

ABSTRACT

BACKGROUND: Results from retrospective studies indicate that selecting individuals for low-dose CT lung cancer screening on the basis of a highly predictive risk model is superior to using criteria similar to those used in the National Lung Screening Trial (NLST; age, pack-year, and smoking quit-time). We designed the Pan-Canadian Early Detection of Lung Cancer (PanCan) study to assess the efficacy of a risk prediction model to select candidates for lung cancer screening, with the aim of determining whether this approach could better detect patients with early, potentially curable, lung cancer. METHODS: We did this single-arm, prospective study in eight centres across Canada. We recruited participants aged 50-75 years, who had smoked at some point in their life (ever-smokers), and who did not have a self-reported history of lung cancer. Participants had at least a 2% 6-year risk of lung cancer as estimated by the PanCan model, a precursor to the validated PLCOm2012 model. Risk variables in the model were age, smoking duration, pack-years, family history of lung cancer, education level, body-mass index, chest x-ray in the past 3 years, and history of chronic obstructive pulmonary disease. Individuals were screened with low-dose CT at baseline (T0), and at 1 (T1) and 4 (T4) years post-baseline. The primary outcome of the study was incidence of lung cancer. This study is registered with ClinicalTrials.gov, number NCT00751660. FINDINGS: 7059 queries came into the study coordinating centre and were screened for PanCan risk. 15 were duplicates, so 7044 participants were considered for enrolment. Between Sept 24, 2008, and Dec 17, 2010, we recruited and enrolled 2537 eligible ever-smokers. After a median follow-up of 5·5 years (IQR 3·2-6·1), 172 lung cancers were diagnosed in 164 individuals (cumulative incidence 0·065 [95% CI 0·055-0·075], incidence rate 138·1 per 10 000 person-years [117·8-160·9]). There were ten interval lung cancers (6% of lung cancers and 6% of individuals with cancer): one diagnosed between T0 and T1, and nine between T1 and T4. Cumulative incidence was significantly higher than that observed in NLST (4·0%; p<0·0001). Compared with 593 (57%) of 1040 lung cancers observed in NLST, 133 (77%) of 172 lung cancers in the PanCan Study were early stage (I or II; p<0·0001). INTERPRETATION: The PanCan model was effective in identifying individuals who were subsequently diagnosed with early, potentially curable, lung cancer. The incidence of cancers detected and the proportion of early stage cancers in the screened population was higher than observed in previous studies. This approach should be considered for adoption in lung cancer screening programmes. FUNDING: Terry Fox Research Institute and Canadian Partnership Against Cancer.


Subject(s)
Early Detection of Cancer/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/epidemiology , Patient Selection , Tomography, X-Ray Computed/methods , Age Distribution , Aged , Area Under Curve , Canada/epidemiology , Cohort Studies , Female , Humans , Incidence , Male , Middle Aged , Neoplasm Invasiveness/pathology , Neoplasm Staging , Predictive Value of Tests , Prospective Studies , Risk Adjustment , Risk Assessment , Sex Distribution , Survival Analysis
2.
J Thorac Oncol ; 12(8): 1210-1222, 2017 08.
Article in English | MEDLINE | ID: mdl-28499861

ABSTRACT

INTRODUCTION: Lung cancer risk prediction models have the potential to make programs more affordable; however, the economic evidence is limited. METHODS: Participants in the National Lung Cancer Screening Trial (NLST) were retrospectively identified with the risk prediction tool developed from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. The high-risk subgroup was assessed for lung cancer incidence and demographic characteristics compared with those in the low-risk subgroup and the Pan-Canadian Early Detection of Lung Cancer Study (PanCan), which is an observational study that was high-risk-selected in Canada. A comparison of high-risk screening versus standard care was made with a decision-analytic model using data from the NLST with Canadian cost data from screening and treatment in the PanCan study. Probabilistic and deterministic sensitivity analyses were undertaken to assess uncertainty and identify drivers of program efficiency. RESULTS: Use of the risk prediction tool developed from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial with a threshold set at 2% over 6 years would have reduced the number of individuals who needed to be screened in the NLST by 81%. High-risk screening participants in the NLST had more adverse demographic characteristics than their counterparts in the PanCan study. High-risk screening would cost $20,724 (in 2015 Canadian dollars) per quality-adjusted life-year gained and would be considered cost-effective at a willingness-to-pay threshold of $100,000 in Canadian dollars per quality-adjusted life-year gained with a probability of 0.62. Cost-effectiveness was driven primarily by non-lung cancer outcomes. Higher noncurative drug costs or current costs for immunotherapy and targeted therapies in the United States would render lung cancer screening a cost-saving intervention. CONCLUSIONS: Non-lung cancer outcomes drive screening efficiency in diverse, tobacco-exposed populations. Use of risk selection can reduce the budget impact, and screening may even offer cost savings if noncurative treatment costs continue to rise.


Subject(s)
Early Detection of Cancer/economics , Lung Neoplasms/economics , Mass Screening/economics , Aged , Cost-Benefit Analysis , Female , Humans , Incidence , Lung Neoplasms/pathology , Male , Middle Aged , Retrospective Studies
3.
Chest ; 150(5): 1015-1022, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27142184

ABSTRACT

BACKGROUND: Lung cancer screening with low-dose CT (LDCT) scan has been demonstrated to reduce lung cancer mortality. Preliminary reports suggested that up to 20% of lung cancers may be CT scan occult but detectable by autofluorescence bronchoscopy (AFB). We evaluated the prevalence of CT scan occult, invasive, and high-grade preinvasive lesions in high-risk participants undergoing screening for lung cancer. METHODS: The first 1,300 participants from seven centers in the Pan-Canadian Early Detection of Lung Cancer Study who had ≥ 2% lung cancer risk over 5 years were invited to have an AFB in addition to a LDCT scan. We determined the prevalence of CT scan and AFB abnormalities and analyzed the association between selected predictor variables and preinvasive lesions plus invasive cancer. RESULTS: A total of 776 endobronchial biopsies were performed in 333 of 1,300 (25.6%) participants. Dysplastic or higher-grade lesions were detected in 5.3% of the participants (n = 68; mild dysplasia: n = 36, moderate dysplasia: n = 25, severe dysplasia: n = 3, carcinoma in situ [CIS]: n = 1, and carcinoma: n = 4). Only one typical carcinoid tumor and one CIS lesion were detected by AFB alone, for a rate of CT scan occult cancer of 0.15% (95% CI, 0.0%-0.6%). Fifty-six prevalence lung cancers were detected by LDCT scan (4.3%). The only independent risk factors for finding of dysplasia or CIS on AFB were smoking duration (OR, 1.05; 95% CI, 1.02-1.07) and FEV1 percent predicted (OR, 0.99; 95% CI, 0.98-0.99). CONCLUSIONS: The addition of AFB to LDCT scan in a high lung cancer risk cohort detected too few CT occult cancers (0.15%) to justify its incorporation into a lung cancer screening program. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00751660; URL: www.clinicaltrials.gov.


Subject(s)
Bronchoscopy/methods , Lung Neoplasms/epidemiology , Lung Neoplasms/pathology , Mass Screening , Precancerous Conditions/epidemiology , Aged , Biopsy , Canada/epidemiology , Early Detection of Cancer , Female , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness , Precancerous Conditions/pathology , Prevalence , Risk Factors
4.
N Engl J Med ; 369(10): 910-9, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-24004118

ABSTRACT

BACKGROUND: Major issues in the implementation of screening for lung cancer by means of low-dose computed tomography (CT) are the definition of a positive result and the management of lung nodules detected on the scans. We conducted a population-based prospective study to determine factors predicting the probability that lung nodules detected on the first screening low-dose CT scans are malignant or will be found to be malignant on follow-up. METHODS: We analyzed data from two cohorts of participants undergoing low-dose CT screening. The development data set included participants in the Pan-Canadian Early Detection of Lung Cancer Study (PanCan). The validation data set included participants involved in chemoprevention trials at the British Columbia Cancer Agency (BCCA), sponsored by the U.S. National Cancer Institute. The final outcomes of all nodules of any size that were detected on baseline low-dose CT scans were tracked. Parsimonious and fuller multivariable logistic-regression models were prepared to estimate the probability of lung cancer. RESULTS: In the PanCan data set, 1871 persons had 7008 nodules, of which 102 were malignant, and in the BCCA data set, 1090 persons had 5021 nodules, of which 42 were malignant. Among persons with nodules, the rates of cancer in the two data sets were 5.5% and 3.7%, respectively. Predictors of cancer in the model included older age, female sex, family history of lung cancer, emphysema, larger nodule size, location of the nodule in the upper lobe, part-solid nodule type, lower nodule count, and spiculation. Our final parsimonious and full models showed excellent discrimination and calibration, with areas under the receiver-operating-characteristic curve of more than 0.90, even for nodules that were 10 mm or smaller in the validation set. CONCLUSIONS: Predictive tools based on patient and nodule characteristics can be used to accurately estimate the probability that lung nodules detected on baseline screening low-dose CT scans are malignant. (Funded by the Terry Fox Research Institute and others; ClinicalTrials.gov number, NCT00751660.).


Subject(s)
Lung Neoplasms/pathology , Lung/diagnostic imaging , Solitary Pulmonary Nodule/diagnostic imaging , Evidence-Based Medicine , Female , Follow-Up Studies , Humans , Logistic Models , Lung/pathology , Lung Neoplasms/diagnostic imaging , Male , Models, Statistical , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Probability , Prospective Studies , Solitary Pulmonary Nodule/pathology , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...