Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 351: 141169, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211789

ABSTRACT

The uptake dynamics of two sulfonamide antibiotics, two fluoroquinolone antibiotics, and the anticonvulsant carbamazepine during the cultivation of two species of edible mushrooms (Agaricus subrufescens and A. bisporus) was investigated. None of the antibiotics were accumulated by the mushrooms, while carbamazepine and its transformation product carbamazepine-10,11-epoxide were taken up by A. bisporus fruiting body but only in small amounts (up to 0.76 and 1.85 µg kg-1 dry weight, respectively). The sulfonamides were quickly removed from the mushroom growth substrate, while the recalcitrant fluoroquinolones and carbamazepine were only partially removed. Dissipation half-lives were generally lower for A. subrufescens than A. bisporus, but A. subrufescens was also grown at a slightly higher culture temperature. A. subrufescens also showed a lower uptake of contaminants. Comparison of maximum dietary intake with other common exposure sources showed that these mushrooms can safely be eaten although produced on a polluted substrate, with respect to the investigated compounds.


Subject(s)
Anti-Bacterial Agents , Biofuels , Biological Transport , Carbamazepine , Pharmaceutical Preparations
2.
J Agric Food Chem ; 71(11): 4458-4465, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36883363

ABSTRACT

Uptake of 19 per- and polyfluoroalkyl substances (PFAS), including C3-C14 perfluoroalkyl carboxylic acids (PFCAs), C4, C6, and C8 perfluoroalkyl sulfonates (PFSAs), and four emerging PFAS, was investigated in two mushroom species (Agaricus bisporus and Agaricus subrufescens) cultivated in a biogas digestate-based substrate. Accumulation of PFAS in mushrooms was low and strongly chain-length dependent. Among the different PFCAs, bioaccumulation factors (log BAFs) decreased from a maximum of -0.3 for perfluoropropanoic acid (PFPrA; C3) to a minimum of -3.1 for perfluoroheptanoate (PFHpA; C7), with only minor changes from PFHpA to perfluorotridecanoate (PFTriDA; C13). For PFSAs, log BAFs decreased from perfluorobutane sulfonate (PFBS; -2.2) to perfluorooctane sulfonate (PFOS; -3.1) while mushroom uptake was not observed for the alternatives 3H-perfluoro-3-[(3-methoxy-propoxy)propanoic acid] (ADONA) and two chlorinated polyfluoro ether sulfonates. To the best of our knowledge, this is the first investigation of the uptake of emerging and ultra-short chain PFAS in mushrooms, and generally the results indicate very low accumulation of PFAS.


Subject(s)
Agaricus , Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Alkanesulfonates , Carboxylic Acids , Water Pollutants, Chemical/analysis
3.
Environ Sci Process Impacts ; 22(4): 1095-1097, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32271340

ABSTRACT

Correction for 'Organic contaminants of emerging concern in Norwegian digestates from biogas production' by Aasim M. Ali et al., Environ. Sci.: Processes Impacts, 2019, 21, 1498-1508.

4.
Environ Sci Process Impacts ; 21(9): 1498-1508, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31257390

ABSTRACT

The aim of this study was to analyze a variety of environmental organic contaminants of emerging concern (CEC) and their metabolites in representative digestate samples from Norwegian biogas production plants. Biogas digestates can be a valuable source for soil amendments and/or fertilizers in commercial agriculture. It is important to assess whether the digestates contain harmful contaminants in order to avoid unintended exposure of human consumers. In total 19 biogas digestates from 12 biogas production plants in Norway were collected and analyzed. Furthermore, process related parameters such as pretreatment of substrates, additives, flocculation and temperature conditions were considered for interpretation of the results. The CEC levels found in the digestates were shown to be dependent on the original composition of the substrate, dry-matter content, and conditioning of the substrate. The sunscreen octocrylene (147 µg L-1) and acetaminophen (paracetamol; 58.6 µg L-1) were found at the highest concentrations in liquid digestates, whereas octocrylene (>600 ng g-1, on a wet weight basis = ww) and the flame retardant TCPP (tris(1-chloro-2-propyl) phosphate, >500 ng g-1 ww) were found at the highest levels in solid digestates, exceeding even the upper limit of quantification (uLOQ) threshold. The highest levels of total CECs were measured in solid digestates (1411 ng g-1 ww) compared to liquid digestates (354 µg L-1 equals 354 ng g-1). The occurrence of CECs in digestate samples, even after extensive and optimized anaerobic digestion, indicates that the operational conditions of the treatment process should be adjusted in order to minimize CEC contamination.


Subject(s)
Biofuels/analysis , Fertilizers/analysis , Refuse Disposal/methods , Soil Pollutants/analysis , Agriculture/methods , Anaerobiosis , Humans , Norway , Soil/chemistry
5.
J Environ Manage ; 217: 12-22, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29579537

ABSTRACT

Biogas digestate use as organic fertilizer has been widely promoted in recent years as a part of the global agenda on recycling waste and new sustainable energy production. Although many studies have confirmed positive effects of digestates on soil fertility, there is still lack of information on the potential adverse effects of digestates on natural soil heavy metal content, metal leaching and leaching of other pollutants. We have investigated the release of aluminium (Al) and chromium (Cr) from different soils treated with commercial digestates high in mentioned potentially problematic metals in a field experiment, while a greenhouse and a laboratory column experiment were used to address mobility of these metals in two other scenarios. Results obtained from the field experiment showed an increase in total concentrations for both investigated metals on plots treated with digestates as well as a significant increase of water-soluble Al concentrations. Factors that were found to be mostly affecting the metal mobility were dissolved organic carbon (DOC), pH and type of soil. Metal binding and free metal concentrations were modelled using the WHAM 7.0 software. Results indicated that the use of digestates with high metal content are comparable to use of animal manure with respect to metal leaching. Data obtained through chemical modelling for the samples from the field experiment suggested that an environmental risk from higher metal mobility has to be considered for Al. In the greenhouse experiment, measured concentrations of leached Cr at the end of the growing season were low for all treatments, while the concentration of leached Al from digestates was higher. The high irrigation column leaching experiment showed an increased leaching rate of Cr with addition of digestates.


Subject(s)
Aluminum/isolation & purification , Biofuels , Chromium/isolation & purification , Edible Grain , Metals, Heavy , Soil , Soil Pollutants
6.
Chemosphere ; 62(10): 1647-55, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16084561

ABSTRACT

A pot experiment was carried out to investigate the impact of Cd and Zn extractability in soil and speciation in pore water of industrial contaminated soils, on metal concentration in a metal sensitive species like spinach (Spinacia oleracea) and a more metal tolerant species like Italian ryegrass (Lolium multiflorum). For chemical speciation of Cd and Zn in pore water, WHAM/Model VI version 6.0 was used. The DGT technique was used to determine the effective concentration, C(E), of Cd and Zn in soils. The free ion activity in pore water correlated well with the contents in plants, and there was a linear relationship between the C(E) values and the concentration of Cd and Zn in both spinach and ryegrass in the non-toxic range. However, the C(E) values usually overestimated the plant contents when plants, particularly the spinach plants, were subjected to toxic concentration in the pore water. Metal uptake decreased in plants affected by toxicity, whereas metal binding to the Chelex resin did not. Thus, we found no linear relationship between the C(E) and metal contents in spinach, whereas a linear relationship was found between C(E)-Zn and the Zn concentration in ryegrass (r2=0.96, p<0.001). For Cd in ryegrass this relationship was weak (r2=0.53, p=0.18). This study indicates that the transport of metals from labile metal pools to the DGT-resin is linearly related to plant uptake only when plants are growing well, and that the applicability of DGT as an indicator for plant uptake seems species dependent.


Subject(s)
Cadmium/analysis , Lolium/growth & development , Models, Theoretical , Soil Pollutants/analysis , Spinacia oleracea/growth & development , Zinc/analysis , Biodegradation, Environmental , Kinetics , Soil/analysis , Soil/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...