Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 36(12): 1776-92, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27090639

ABSTRACT

We and others have shown that the cystatin E/M gene is inactivated in primary human tumors, pointing to its role as a tumor suppressor gene. However, the molecular mechanism of tumor suppression is not yet understood. Using plasmid-directed cystatin E/M gene overexpression, a lentivirus-mediated tetracycline-inducible vector system, and human papillomavirus 16 (HPV 16) E6 and E7 gene-immortalized normal human epidermal keratinocytes, we demonstrated intracellular and non-cell-autonomous apoptotic growth inhibition of tumor cell lines and that growth inhibition is associated with cytoplasmic retention of NF-κB. We further demonstrated decreased phosphorylation of IκB kinase (IKKß) and IκBα in the presence of tumor necrosis factor alpha (TNF-α), confirming the role of cystatin E/M in the regulation of the NF-κB signaling pathway. Growth suppression of nude mouse xenograft tumors carrying a tetracycline-inducible vector system was observed with the addition of doxycycline in drinking water, confirming that the cystatin E/M gene is a tumor suppressor gene. Finally, immunohistochemical analyses of cervical carcinoma in situ and primary tumors have shown a statistically significant inverse relationship between the expression of cystatin E/M and cathepsin L and a direct relationship between the loss of cystatin E/M expression and nuclear expression of NF-κB. We therefore propose that the cystatin E/M suppressor gene plays an important role in the regulation of NF-κB.


Subject(s)
Cystatin M/metabolism , Cytoplasm/metabolism , I-kappa B Proteins/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Uterine Cervical Neoplasms/pathology , Animals , Cathepsin L/metabolism , Cell Line, Tumor , Cell Proliferation , Cystatin M/genetics , Doxycycline/administration & dosage , Female , Gene Expression Regulation, Neoplastic , Genetic Vectors/pharmacology , HeLa Cells , Humans , Lentivirus/genetics , Mice , Mice, Nude , Neoplasm Transplantation , Phosphorylation , Signal Transduction , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism
2.
Cancer Immunol Res ; 2(9): 831-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25187273

ABSTRACT

With the recent success of checkpoint inhibitors and other immunomodulating agents, there has been renewed interest in the combination of such agents with radiation. The biologic premise behind such a strategy is that the tumor-antigen release achieved by localized radiation will promote specific tumor targeting by the adaptive immune system, which can be augmented further by systemic immune-stimulating agents. In this manner, clinicians hope to induce a phenomenon known as the abscopal effect, whereby localized radiation results in immune-mediated tumor regression in disease sites well outside of the radiation field. Herein, we present a comprehensive overview of the early clinical and preclinical evidence behind this approach.


Subject(s)
Immunotherapy/methods , Neoplasms/therapy , Radiotherapy , Animals , Antigens, Neoplasm/immunology , Combined Modality Therapy , Humans , Immune System , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...