Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 10(1): 40, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35346366

ABSTRACT

Hereditary spastic paraplegias (HSPs) are a group of inherited, progressive neurodegenerative conditions characterised by prominent lower-limb spasticity and weakness, caused by a length-dependent degeneration of the longest corticospinal upper motor neurons. While more than 80 spastic paraplegia genes (SPGs) have been identified, many cases arise from mutations in genes encoding proteins which generate and maintain tubular endoplasmic reticulum (ER) membrane organisation. The ER-shaping proteins are essential for the health and survival of long motor neurons, however the mechanisms by which mutations in these genes cause the axonopathy observed in HSP have not been elucidated. To further develop our understanding of the ER-shaping proteins, this study outlines the generation of novel in vivo and in vitro models, using CRISPR/Cas9-mediated gene editing to knockout the ER-shaping protein ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1), mutations in which give rise to the HSP subtype SPG61. Loss of Arl6IP1 in Drosophila results in progressive locomotor deficits, emulating a key aspect of HSP in patients. ARL6IP1 interacts with ER-shaping proteins and is required for regulating the organisation of ER tubules, particularly within long motor neuron axons. Unexpectedly, we identified physical and functional interactions between ARL6IP1 and the phospholipid transporter oxysterol-binding protein-related protein 8 in both human and Drosophila model systems, pointing to a conserved role for ARL6IP1 in lipid homeostasis. Furthermore, loss of Arl6IP1 from Drosophila neurons results in a cell non-autonomous accumulation of lipid droplets in axonal glia. Importantly, treatment with lipid regulating liver X receptor-agonists blocked lipid droplet accumulation, restored axonal ER organisation, and improved locomotor function in Arl6IP1 knockout Drosophila. Our findings indicate that disrupted lipid homeostasis contributes to neurodegeneration in HSP, identifying a potential novel therapeutic avenue for the treatment of this disorder.


Subject(s)
Liver X Receptors , Spastic Paraplegia, Hereditary , Animals , Disease Models, Animal , Drosophila/metabolism , Endoplasmic Reticulum/metabolism , Humans , Liver X Receptors/agonists , Membrane Transport Proteins/genetics , Spastic Paraplegia, Hereditary/drug therapy , Spastic Paraplegia, Hereditary/genetics
2.
Forensic Sci Int Genet ; 53: 102517, 2021 07.
Article in English | MEDLINE | ID: mdl-33865096

ABSTRACT

Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy.


Subject(s)
Eye Color/genetics , Hair Color/genetics , Polymorphism, Single Nucleotide , Skin Pigmentation/genetics , Datasets as Topic , Genetics, Population , Genotype , Humans , Latin America , Logistic Models , Phenotype
3.
Nat Commun ; 10(1): 358, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30664655

ABSTRACT

We report a genome-wide association scan in >6,000 Latin Americans for pigmentation of skin and eyes. We found eighteen signals of association at twelve genomic regions. These include one novel locus for skin pigmentation (in 10q26) and three novel loci for eye pigmentation (in 1q32, 20q13 and 22q12). We demonstrate the presence of multiple independent signals of association in the 11q14 and 15q13 regions (comprising the GRM5/TYR and HERC2/OCA2 genes, respectively) and several epistatic interactions among independently associated alleles. Strongest association with skin pigmentation at 19p13 was observed for an Y182H missense variant (common only in East Asians and Native Americans) in MFSD12, a gene recently associated with skin pigmentation in Africans. We show that the frequency of the derived allele at Y182H is significantly correlated with lower solar radiation intensity in East Asia and infer that MFSD12 was under selection in East Asians, probably after their split from Europeans.


Subject(s)
Epistasis, Genetic , Eye Color/genetics , Genome, Human , Quantitative Trait Loci , Skin Pigmentation/genetics , Alleles , Asian People , Biological Evolution , Ethnicity , Female , Gene Expression , Gene Frequency , Genetics, Population , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors/genetics , Humans , Latin America , Male , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Polymorphism, Single Nucleotide , Receptor, Metabotropic Glutamate 5/genetics , Ubiquitin-Protein Ligases , White People
4.
Elife ; 62017 07 25.
Article in English | MEDLINE | ID: mdl-28742022

ABSTRACT

Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.


Subject(s)
Axons/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Endoplasmic Reticulum/metabolism , Membrane Transport Proteins/genetics , Spastic Paraplegia, Hereditary/genetics , Animals , Axonal Transport , Axons/ultrastructure , Disease Models, Animal , Drosophila Proteins/deficiency , Drosophila melanogaster/classification , Drosophila melanogaster/cytology , Drosophila melanogaster/ultrastructure , Endoplasmic Reticulum/ultrastructure , Gene Expression , Humans , Larva/cytology , Larva/genetics , Larva/metabolism , Larva/ultrastructure , Membrane Transport Proteins/deficiency , Mutation , Phylogeny , Protein Isoforms/deficiency , Protein Isoforms/genetics , Spastic Paraplegia, Hereditary/metabolism , Spastic Paraplegia, Hereditary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...