Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 27(16): 3765-3778, 2021 08.
Article in English | MEDLINE | ID: mdl-34009702

ABSTRACT

Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator-prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4-18℃). This enabled us to parameterize a Rosenzweig-MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator-prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator-prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species.


Subject(s)
Food Chain , Predatory Behavior , Acclimatization , Animals , Iceland , Population Dynamics , Temperature
2.
J Anim Ecol ; 88(11): 1670-1683, 2019 11.
Article in English | MEDLINE | ID: mdl-31283002

ABSTRACT

Global warming is one of the greatest threats to the persistence of populations: increased metabolic demands should strengthen pairwise species interactions, which could destabilize food webs at the higher organizational levels. Quantifying the temperature dependence of consumer-resource interactions is thus essential for predicting ecological responses to warming. We explored feeding interactions between different predator-prey pairs in controlled-temperature chambers and in a system of naturally heated streams. We found consistent temperature dependence of attack rates across experimental settings, though the magnitude and activation energy of attack rate were specific to each predator, which varied in mobility and foraging mode. We used these parameters along with metabolic rate measurements to estimate energetic efficiency and population abundance with warming. Energetic efficiency accurately estimated field abundance of a mobile predator that struggled to meet its metabolic demands, but was a poor predictor for a sedentary predator that operated well below its energetic limits. Temperature effects on population abundance may thus be strongly dependent on whether organisms are regulated by their own energy intake or interspecific interactions. Given the widespread use of functional response parameters in ecological modelling, reconciling outcomes from laboratory and field studies increases the confidence and precision with which we can predict warming impacts on natural systems.


Subject(s)
Food Chain , Predatory Behavior , Animals , Global Warming , Temperature
3.
Nat Ecol Evol ; 3(6): 919-927, 2019 06.
Article in English | MEDLINE | ID: mdl-31110252

ABSTRACT

Predator-prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator-prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator-prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.


Subject(s)
Ecosystem , Food Chain , Animals , Body Size , Predatory Behavior , Vertebrates
4.
Ecol Evol ; 8(24): 12737-12749, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619578

ABSTRACT

The ecological implications of body size extend from the biology of individual organisms to ecosystem-level processes. Measuring body mass for high numbers of invertebrates can be logistically challenging, making length-mass regressions useful for predicting body mass with minimal effort. However, standardized sets of scaling relationships covering a large range in body length, taxonomic groups, and multiple geographical regions are scarce. We collected 6,212 arthropods from 19 higher-level taxa in both temperate and tropical locations to compile a comprehensive set of linear models relating live body mass to a range of predictor variables. We measured live weight (hereafter, body mass), body length and width of each individual and conducted linear regressions to predict body mass using body length, body width, taxonomic group, and geographic region. Additionally, we quantified prediction discrepancy when using parameters from arthropods of a different geographic region. Incorporating body width into taxon- and region-specific length-mass regressions yielded the highest prediction accuracy for body mass. Using regression parameters from a different geographic region increased prediction discrepancy, causing over- or underestimation of body mass depending on geographical origin and whether body width was included. We present a comprehensive range of parameters for predicting arthropod body mass and provide guidance for selecting optimal scaling relationships. Given the importance of body mass for functional invertebrate ecology and the paucity of adequate regressions to predict arthropod body mass from different geographical regions, our study provides a long-needed resource for quantifying live body mass in invertebrate ecology research.

SELECTION OF CITATIONS
SEARCH DETAIL
...