Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 45(48): 19416-19427, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27882362

ABSTRACT

We synthesized six Fe(iii)-Mn(iii) bimetallic compounds by self-assembling the newly developed mer-Fe cyanide PPh4[Fe(Clqpa)(CN)3]·H2O (1) and PPh4[Fe(Brqpa)(CN)3]·H2O (2) with Mn Schiff base Mn(5-Xsalen)+ cations. These compounds include [Fe(Xqpa)(CN)3][Mn(5-Ysalen)]·pMeOH·qH2O [qpaH2 = N-(quinolin-8-yl)picolinamide; salen = N,N'-ethylenebis(salicylideneiminato) dianion; X = Cl, Y = H (3); X = Cl, Y = Br (4); X = Br, Y = H (5); X = Br, Y = F (6); X = Br, Y = Cl (7); X = Br, Y = Br (8)]. When precursor 1 was used, compounds 3 and 4 were isolated to give a dinuclear entity and a linear chain structure, respectively. The reaction of precursor 2 with the Schiff bases afforded four linear Fe(iii)-Mn(iii) chain complexes. Chain chirality with P- and M-helicity emerges in 4, 7, and 8, while 5 exhibits chain helicity opposite to the previous chain complexes and 6 presents no chain helicity. Such a structural feature is heavily dependent on the interchain π-π contacts and the Fe precursor bridging unit. Chiral induction from a local ethylenediamine link of Y-salen is propagated over the chain via noncovalent π-π interactions. All the bimetallic compounds show antiferromagnetic interactions transmitted by the cyanide linkage. A field-induced metamagnetic transition is involved in 4, 7, and 8, while a field-induced two-step transition is evident in 6. From a magnetostructural viewpoint, the coupling constant is primarily governed by the Mn-Nax-Cax angle (ax = axial) in the bimetallic chain complexes composed of mer-Fe(iii) tricyanides, although the torsion angle plays a role.

2.
Dalton Trans ; 41(6): 1776-85, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22159090

ABSTRACT

Five Fe(III)Mn(III) bimetallic compounds [Fe(iqc)(CN)(3)][Mn(5-Xsalen)]·pMeOH·qMeCN·rH(2)O [Hiqc = N-(quinolin-8-yl)isoquinoline-1-carboxamide; salen = N,N'-ethylenebis(salicylideneiminato) dianion; X = H(2), F(3, 3a), Cl(4), Br(5)] were prepared by assembling a newly designed mer-Fe tricyanide (Ph(4)P)[Fe(iqc)(CN)(3)]·0.5H(2)O (1) and the respective Mn Schiff bases Mn(5-Xsalen)(+). Compounds 2-4 show linear chain structures in which trans-positioned cyanides of the Fe precursor bridge neighbouring Mn atoms, while 5 is a zigzag chain coordination polymer where two cyanide groups of the precursor in the cis mode act as bridges. The structural change from linear to zigzag may arise from the size effect of the halogens. The reversible structural transformation occurs between 3 and 3a upon the solvation-desolvation protocol and the corresponding magnetic behaviours are affected. Furthermore, in 4 and 5, the helical chains are established through hydrogen bonding of solvent molecules. From a magnetostructural point of view, within the linear chain system, the ferromagnetic coupling in 2, contrary to antiferromagnetic interactions in 3-4, is associated with the large torsion angle of C(eq)-Fe-Mn-N(O)(eq) (eq = equatorial) as well as almost the linear Mn-N≡C angle.


Subject(s)
Ferric Compounds/chemistry , Ferricyanides/chemistry , Magnets/chemistry , Manganese/chemistry , Schiff Bases/chemistry , Crystallography, X-Ray , Ferric Compounds/chemical synthesis , Ferricyanides/chemical synthesis , Models, Molecular , Molecular Structure , Schiff Bases/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...