Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464267

ABSTRACT

Retrotransposons are viral-like DNA sequences that constitute approximately 41% of the human genome. Studies in Drosophila, mice, cultured cells, and human brain indicate that retrotransposons are activated in settings of tauopathy, including Alzheimer's disease, and causally drive neurodegeneration. The anti-retroviral medication 3TC (lamivudine), a nucleoside analog reverse transcriptase inhibitor, limits retrotransposon activation and suppresses neurodegeneration in tau transgenic Drosophila, two mouse models of tauopathy, and in brain assembloids derived from patients with sporadic Alzheimer's disease. We performed a 24-week phase 2a open-label clinical trial of 300 mg daily oral 3TC (NCT04552795) in 12 participants aged 52-83 years with a diagnosis of mild cognitive impairment due to suspected Alzheimer's disease. Primary outcomes included feasibility, blood brain barrier penetration, effects of 3TC on reverse transcriptase activity in the periphery, and safety. Secondary outcomes included changes in cognition and fluid-based biomarkers of neurodegeneration and neuroinflammation. All participants completed the six-month trial; one event of gastrointestinal bleeding due to a peptic ulcer was reported. 3TC was detected in blood and cerebrospinal fluid (CSF) of all participants, suggestive of adherence to study drug and effective brain penetration. Cognitive measures remained stable throughout the study. Glial fibrillary acidic protein (GFAP) (P=0.03) and Flt1 (P=0.05) were significantly reduced in CSF over the treatment period; Aß42/40 (P=0.009) and IL-15 (P=0.006) were significantly elevated in plasma. While this is an open label study of small sample size, the significant decrease of some neurodegeneration- and neuroinflammation-related biomarkers in CSF, significantly elevated levels of plasma Aß42/40, and a trending decrease of CSF NfL after six months of 3TC exposure suggest a beneficial effect on subjects with mild cognitive impairment due to suspected Alzheimer's disease. Feasibility, safety, tolerability, and central nervous system (CNS) penetration assessments further support clinical evaluation of 3TC in a larger placebo-controlled, multi-dose clinical trial.

2.
Front Aging ; 4: 1058968, 2023.
Article in English | MEDLINE | ID: mdl-36756194

ABSTRACT

Neurodegenerative tauopathies, including Alzheimer's disease, are pathologically defined by the presence of aggregated forms of tau protein in brains of affected individuals. Previous studies report that the negative effects of pathogenic tau on the actin cytoskeleton and microtubules cause a toxic destabilization of the lamin nucleoskeleton and formation of nuclear invaginations and blebs. Based on the known function of the nucleus as a mechanosensor, as well as the high incidence of nuclear pleomorphism in human Alzheimer's disease and related tauopathies, we investigated the effects of pathogenic tau on nuclear tension. We first find that tau-dependent nuclear envelope invagination and relocalization of LInker of Nucleoskeleton and Cytoskeleton (LINC) complex components are conserved in a newly-developed neuroblastoma cell line that features doxycycline-inducible expression of a tau mutant associated with autosomal dominant frontotemporal dementia. We next determine that a Förster resonance energy transfer (FRET)-based sensor of nuclear tension responds to cytoskeletal stabilization and destabilization when expressed in neuroblastoma cells. Using this nuclear tension sensor, we find that induced expression of pathogenic tau is sufficient to decrease nuclear tension. This work provides the initial proof-of-concept evidence that pathogenic forms of tau alter nuclear tension, paving the way for the future study of altered nuclear mechanosensing in the context of tau-mediated neurodegenerative disorders.

3.
Cult Stud Sci Educ ; 17(2): 557-588, 2022.
Article in English | MEDLINE | ID: mdl-35126768

ABSTRACT

Native Americans are the least represented population in science fields. In recent years, undergraduate and graduate level summer research programs that aimed to increase the number of Native Americans in science have made some progress. As new programs are designed, key characteristics that address science self-efficacy and science identity and provide supports for Native American students' commitment to a scientific career should be considered. In this study, we used sequential mixed methods to investigate the potential of culturally tailored internship programs on Native American persistence in science. We analyzed surveys (n = 47) and interviews (n = 4) with Native American students to understand their perceptions of themselves in relation to science research and how summer research experiences might develop science identities. Based on regression modeling, science identity, but not science self-efficacy, predicted intent to persist in science. In turn, science self-efficacy and Native American identity predicted science identity, and this suggests cultural identity is central to Native American persistence in science. In interviews, students' comments reinforced these findings and shed light on students' reasoning about the kinds of science experiences they sought; specifically, they chose to participate in culturally tailored internships because these programs provided a sense of belonging to the scientific community that did not conflict with their cultural identities. Based on our analysis, we propose an Indigenous science internship model and recommend that agencies target funding for culturally tailored programs from high school through early-investigator levels as well as provide inclusive programmatic and mentoring guidelines.

SELECTION OF CITATIONS
SEARCH DETAIL
...