Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37630150

ABSTRACT

Ionic wind, which is generated by a corona discharge, is a promising field that offers significant advantages by directly converting electrical energy into kinetic energy. Because of the electrical characteristics of ionic wind, most studies aiming to improve the performance of ionic wind generators have focused on modifying the geometry of electrode configurations. A mesh-type electrode is one of the electrodes used as a collecting electrode in an ionic wind generator. Using a mesh electrode results in decreased momentum of the ionic wind and increased pressure drop due to frictional loss of the flow. In this study, to minimize the reduction in momentum, a mesh electrode with a central hole was proposed and investigated. Experiments were conducted with the configuration of a needle and mesh with the central hole. These experiments analyzed the effect of the central hole diameter and the distance between the needle and the mesh electrodes on the electrical and physical characteristics of the ionic wind. The addition of the central hole led to a higher average velocity and lower current, thus resulting in increased energy conversion efficiency. The presented configuration offers a simple geometry without electrical and physical interference from complex configurations, and it is considered to have the potential to improve energy conversion efficiency and optimize ionic wind flow.

2.
Micromachines (Basel) ; 14(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36985088

ABSTRACT

Inkjet is a well-established technology that has been applied in various applications ranging from graphical printing to functional material printing [...].

3.
Micromachines (Basel) ; 13(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35457919

ABSTRACT

Experimental and numerical analysis of the drop-on-demand inkjet was conducted to determine the jetting characteristics and meniscus motion under the control of the ink supply pressure. A single transparent nozzle inkjet head driven by a piezoelectric actuator was used to eject droplets. To control ink supply pressure, the pressure of the air in the reservoir was regulated by a dual valve pressure controller. The inkjet performance and the motion of the meniscus were evaluated by visualization and numerical simulation. A two-dimensional axisymmetric numerical simulation with the dynamic mesh method was performed to simulate the inkjet dynamics, including the actual deformation of the piezoelectric actuator. Numerical simulation showed good agreement with the experimental results of droplet velocity and volume with an accuracy of 87.1%. Both the experimental and simulation results showed that the drop volume and velocity were linearly proportional to the voltage change. For the specific voltages, an analysis of the effect of the ink supply pressure control was conducted. At the maximum negative pressure, -3 kPa, the average velocity reductions were 0.558 and 0.392 m/s in the experiment and simulation, respectively, which were 18.7 and 11.6% less than those of the uncontrolled case of 0 kPa. Therefore, the simulation environment capable of simulating the entire inkjet dynamics, including meniscus movement regarded to be successfully established. The average volume reductions were 18.7 and 6.97 pL for the experiment and simulation, respectively, which were 21.7 and 9.17% less than those of the uncontrolled case. In the results of the meniscus motion simulation, the damping of the residual vibration agreed well with the experimental results according to the ink supply pressure change. Reducing the ink supply pressure reduced the speed and volume, improved the damping of residual vibrations, and suppressed satellite drops. Decreasing ink supply pressure can be expected to improve the stability and productivity of inkjet printing.

4.
Micromachines (Basel) ; 11(10)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993189

ABSTRACT

This study analyzed the characteristics of a small reciprocating pump with a cantilever valve driven by a piezo actuator. Three types of valves were fabricated to investigate the effect of the valve stiffness on the pump performance and to measure the variation in the flow rate according to the frequency. The flow rate increased with the driving frequency until a certain frequency was reached, and then it started to decrease. The rise in the pressure of the pump was found to increase as the stiffness decreased. The pump performance could be clearly distinguished according to the stiffness of the valve. The observation of the valve movements revealed that the valve opening time did not change regardless of the operating frequency, but it changed with the valve stiffness. The delay in time for the outlet valve increased significantly with an increase in the frequency. It seems that the overlap of the opening time of the inlet valve and the outlet valve plays an important role in pump performance. Therefore, it is advisable to use different designs for the inlet and outlet valves, where the shape and stiffness of the valve are adjusted.

SELECTION OF CITATIONS
SEARCH DETAIL
...