Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 11(2)2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30708963

ABSTRACT

To improve the dissolution and oral bioavailability of valsartan (VST), we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMED) composed of Capmul® MCM (oil), Tween® 80 (surfactant), Transcutol® P (cosurfactant), and Poloxamer 407 (precipitation inhibitor) but encountered a stability problem (Transcutol® P-induced weight loss in storage) after solidification. In the present study, replacing Transcutol® P with Gelucire® 44/14 resulted in a novel SuSMED formulation, wherein the total amount of surfactant/cosurfactant was less than that of the previous formulation. Solidified SuSMED (S-SuSMED) granules were prepared by blending VST-containing SuSMED with selective solid carriers, L-HPC and Florite® PS-10, wherein VST existed in an amorphous state. S-SuSMED tablets fabricated by direct compression with additional excipients were sufficiently stable in terms of drug content and impurity changes after 6 months of storage at accelerated conditions (40 ± 2 °C and 75 ± 5% relative humidity). Consequently, enhanced dissolution was obtained (pH 1.2, 2 h): 6-fold for S-SuSMED granules against raw VST; 2.3-fold for S-SuSMED tablets against Diovan® (reference tablet). S-SuSMED tablets increased oral bioavailability in rats (10 mg/kg VST dose): approximately 177⁻198% versus raw VST and Diovan®. Therefore, VST-loaded S-SuSMED formulations might be good candidates for practical development in the pharmaceutical industry.

2.
Oncotarget ; 8(55): 94297-94316, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29212229

ABSTRACT

In order to improve the dissolution and oral bioavailability of valsartan (VST), and reduce the required volume for treatment, we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) composed of VST (80 mg), Capmul® MCM (13.2 mg), Tween® 80 (59.2 mg), Transcutol® P (59.2 mg), and Poloxamer 407 (13.2 mg). In the present study, by using Florite® PS-10 (119.1 mg) and Vivapur® 105 (105.6 mg) as solid carriers, VST-loaded solidified SuSMEDDS (S-SuSMEDDS) granules were successfully developed, which possessed good flow properties and rapid drug dissolution. By introducing croscarmellose sodium (31 mg) as a superdisintegrant, S-SuSMEDDS tablets were also successfully formulated, which showed fast disintegration and high dissolution efficiency. Preparation of granules and tablets was successfully optimized using D-optimal mixture design and 3-level factorial design, respectively, resulting in percentage prediction errors of <10%. In pharmacokinetic studies in rats, the relative bioavailability of the optimized granules was 107% and 222% of values obtained for SuSMEDDS and Diovan® powder, respectively. Therefore, we conclude that novel S-SuSMEDDS formulations offer great potential for developing solid dosage forms of a liquefied formulation such as SuSMEDDS, while improving oral absorption of drugs with poor water solubility.

3.
Acta Pharm ; 67(4): 479-494, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29337669

ABSTRACT

In this study, we investigated the gastroprotective effect of an isopropanol extract from the aerial parts of Artemisia princeps (IPAP) and developed a gastroretentive floating tablet of IPAP (IPAP-FR) for maximized local gastroprotective effects. Pre-treatment with IPAP ameliorated the gastric mucosal hemorrhagic lesions in ethanol/HCl- or indomethacin- treated rats. IPAP decreased mucosal hemorrhage of gastric ulcers induced by ethanol or indomethacin plus pyloric ligation in rats. The optimized floating tablet, IPAP-FR, floated on medium surface with more sustained eupatilin release compared to the non-floating control tablet. X-ray photographs in beagle dogs showed that IPAPFR was retained for > 2 h in the stomach. In the ethanol-induced gastric ulcer rat model, the gastric hemorrhagic lesion was improved more substantially with IPAP-FR compared to the non-floating control tablet. Based on these data, our data suggest that IPAP-FR has an improved therapeutic potential for the treatment of gastric ulcer.


Subject(s)
Artemisia/chemistry , Gastric Mucosa/drug effects , Plant Extracts/pharmacology , 2-Propanol , Animals , Anti-Ulcer Agents/pharmacology , Dogs , Ethanol/adverse effects , Flavonoids/pharmacology , Indomethacin/adverse effects , Ligation/adverse effects , Male , Peptic Ulcer Hemorrhage/chemically induced , Peptic Ulcer Hemorrhage/etiology , Peptic Ulcer Hemorrhage/prevention & control , Plant Extracts/administration & dosage , Rats , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced , Stomach Ulcer/complications , Stomach Ulcer/prevention & control , Tablets
4.
Int J Pharm ; 511(2): 864-75, 2016 Sep 25.
Article in English | MEDLINE | ID: mdl-27492018

ABSTRACT

To develop a matrix-type, controlled-release tablet formulation of pelubiprofen (PLB), a recently developed non-steroidal anti-inflammatory drug, polymeric excipients including hypromellose, hydroxypropylcellulose, Eudragit(®) RS PO, and Kollidon(®) SR were screened. A formulation containing 12.4% w/w Kollidon(®) SR (K2 tablet) was found to be the most promising and stable for 6 months in an accelerated stability test. PLB release from K2 tablet was limited at pH 1.2, but gradually increased at pH 6.8 with a surface-erosion, resulting in the best fit to Hixson-Crowell equation. Comparative human PK studies were performed using a randomized, 2-way crossover design. LC-MS/MS assay revealed that the plasma level of PLB-transOH, an active metabolite, was significantly higher than that of PLB. After multiple dosing of immediate-release tablet (R) and K2 tablet (T), the T/R ratios of AUC were 1.02 and 1.04 for PLB and PLB-transOH, respectively. Level A in vitro-in vivo correlation was established for the K2 tablet-administered group. PK profile of PLB-transOH was not influenced by food intake, while that of PLB was altered. We suggest that K2 tablet could be administered twice a day without being affected by food intake, thereby enhancing patient compliance.


Subject(s)
Phenylpropionates/pharmacokinetics , Adult , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Drug Liberation , Drug Stability , Eating , Excipients/chemistry , Excipients/pharmacokinetics , Humans , Phenylpropionates/blood , Phenylpropionates/chemistry , Solubility , Tablets/chemistry , Tablets/pharmacokinetics , Young Adult
5.
Biol Pharm Bull ; 34(9): 1508-13, 2011.
Article in English | MEDLINE | ID: mdl-21881242

ABSTRACT

Previously, the authors demonstrated that the triterpenoid glycoside niga-ichigoside F1 (NIF1) and its aglycone 23-hydroxytormentic acid (23-HTA) isolated from the unripe fruits of Rubus coreanus (Rosaceae) ameliorate cisplatin-induced toxicity in renal epithelial LLC-PK1 cells. In the present study, the nephroprotective effects of NIF1 and 23-HTA were investigated in Sprague-Dawley rats with acute renal injury induced by a single intraperitoneal (i.p.) injection of cisplatin (7 mg/kg). Pretreatment with 23-HTA (10 mg/kg/d, per os (p.o.)) significantly reduced cisplatin-induced elevations in blood urea nitrogen (BUN) and serum creatinine level, whereas NIF1 (10 mg/kg, p.o.) slightly reduced these levels. In addition, pretreatment with 23-HTA prevented cisplatin-induced hydroxyl radical generation, malondialdehyde (MDA) production, glutathione (GSH) depletion, and cisplatin-induced changes in the activities of oxidant and antioxidant enzymes in rat renal tissues. In addition, histopathological examinations showed that 23-HTA pretreatment reduced cisplatin-induced acute tubular necrosis and histological changes. In contrast, NIF1 was found to have a slight or no influence on cisplatin-induced oxidative enzymes and acute tubular necrosis. Taken together, these results suggest that protective effect of 23-HTA pretreatment on cisplatin-induced renal damage is associated with the attenuation of oxidative stress and the preservation of antioxidant enzymes.


Subject(s)
Antineoplastic Agents/toxicity , Cisplatin/toxicity , Kidney Diseases/drug therapy , Triterpenes/pharmacology , Animals , Antioxidants/metabolism , Blood Urea Nitrogen , Creatinine/blood , Glutathione/metabolism , Hydroxyl Radical/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , LLC-PK1 Cells , Male , Malondialdehyde/metabolism , Rats , Rats, Sprague-Dawley , Swine
6.
J Cell Biochem ; 112(12): 3594-603, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21809372

ABSTRACT

Pelubiprofen is a non-steroidal anti-inflammatory drugs (NSAIDs) that is related both structurally and pharmacologically to ibuprofen. Anti-inflammatory properties of ibuprofen are due to its ability to both decrease prostaglandin synthesis by inhibiting the activities of cyclooxygenases (COXs) and IκB kinase-ß (IKK-ß). However, the exact mechanisms that accounts for the anti-inflammatory effects of pelubiprofen are not reported. In this study, we investigated the molecular mechanisms how pelubiprofen modulates the inflammatory mediators in LPS-induced macrophages and carrageenan-induced acute inflammatory rat model. Pelubiprofen potently diminished PGE(2) productions through inhibition of COX enzyme activity (IC(50) values for COX-1 and COX-2 are 10.66 ± 0.99 and 2.88 ± 1.01 µM, respectively), but also reduced the expressions of COX-2, inducible nitric oxide (iNOS), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 at transcriptional level in LPS-induced RAW 264.7 cells. In addition, pelubiprofen attenuated the LPS-induced transcription activity and the DNA binding activity of NF-κB, which was accompanied by a parallel reduction of degradation and phosphorylation of inhibitory kappa B-α (IκB-α) and consequently by decreased nuclear translocation of NF-κB. Furthermore, pelubipofen inhibited the LPS-induced phosphorylation of IKK-ß and transforming growth factor-ß activated kinase-1 (TAK1). In acute inflammatory rat model, pretreatment with pelubiprofen inhibited carrageenan-induce edema, neutrophil migration, PGE(2) production, and p65, a subunit of NF-κB, nuclear translocation in inflamed paw. Taken together, our data indicated that pelubiprofen is involved in the dual inhibition of COX activity and TAK1-IKK-NF-κB pathway, revealing molecular basis for the anti-inflammatory properties of pelubiprofen.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , NF-kappa B/antagonists & inhibitors , Animals , Base Sequence , Blotting, Western , DNA Primers , Electrophoretic Mobility Shift Assay , Inhibitory Concentration 50 , Rats , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...