Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 246: 118129, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38211718

ABSTRACT

The depletion of finite fossil fuel reserves and the severe environmental degradation resulting from human activities have compelled the expeditious development and application of sustainable waste to energy technologies. To encapsulate energy and environment in sustainability paradigm, bio waste based energy production is need to be forged in organic bio refinery setup. According to world bioenergy association, biomass can cover 50 % of the primary energy demand of the world. Therefore, the present study focuses on reforming the energy mix for a clean energy generation, where, sample composition of cotton stalk was acidified in dilute (5% wt.) hydrochloric acid (HCL) for analyzing material burnout patterns in biomass conversion systems utilized in organic bio refinery sector. Advanced thermochemical burning technique, which includes pyrolysis and combustion was applied at four different leaching times from 0 to 180 min under nitrogen environment from 0 °C to 500 °C and air from 500 °C to 900 °C, respectively. Different analyses including proximate, ultimate, gross calorific value (GCV), thermos-gravimetric, kinetic, XRD, FTIR, SEM-EDS were used for analyzing the degradation of demineralized cotton stalk at different treatment rates. Proximate study demonstrated that cotton stalk leaching for 180 min has efficiently infused HCL, leading in a significant increase in fixed carbon and higher heating value of 20.23 % and 12.48%, respectively, as well as a reduction in carbon footprint of around 54.80%. The findings of proximate was validated by GCV analysis and CHNS analysis as value of carbon and hydrogen has shown increasing behavior with the time delay in demineralization Thermo-gravimetric and derivative thermo-gravimetric data analyses shows an increasing trend of conversion efficiency, with the maximum increase of 98 % reported for sample 3H.TT.DEM. XRD characterization has reported 23° to 25° angle for all the observed peaks. Sample 3H.TT.DEM has shown maximum angle inclination along with matured crystalline peak. The latter observations has been validated by FTIR spectroscopy as sample 3H.TT.DEM has reported maximum O-H group formation. Sample 3H.TT.DEM has reported lowest activation energy of 139.51 kJ*mole-1 and lowest reactivity of 0.000293649%*min 0C, due to moderate and stable reactiveness. In SEM examination, increment in pore size and number of pores within the structural matrix of cotton stalk was observed with the enhancement in acidulation process. Furthermore, in EDS analysis, 3H.TT.DEM has shown most balanced distribution of the elements. In this research, sustainable transformation of biomass is envisioned to improve the waste bio refinery system, significantly contributing to the achievement of Sustainable Development Goals 7, 12 and 13.


Subject(s)
Carbon , Nitrogen , Humans , Biomass , Nitrogen/analysis , Pyrolysis , Biofuels/analysis
2.
Membranes (Basel) ; 12(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36557085

ABSTRACT

Solar-activated water treatment has become an emerging research field due to its eco-friendly nature and the economic feasibility of green photocatalysis. Herein, we synthesized promising, cost-effective, and ultralong-semiconductor TiO2 nanowires (NW), with the aim to degrade toxic azo dyes. The band gap of TiO2 NW was tuned through transition metals, i.e., chromium (Cr) and manganese (Mn), and narrowed by conjugation with high surface area graphene oxide (GO) sheets. Cr-Mn-doped TiO2 NWs were chemically grafted onto GO nanosheets and polymerized with sodium alginate to form a mesh network with an excellent band gap (2.6 eV), making it most suitable to act as a solar photocatalytic membrane. Cr-Mn-doped TiO2 NW @GO aerogels possess high purity and crystallinity confirmed by Energy Dispersive X-ray spectroscopy and X-ray diffraction pattern. A Cr-Mn-doped TiO2 NW @GO aerogels membrane was tested for the photodegradation of Acid Black 1 (AB 1) dye. The synthesized photocatalytic membrane in the solar photocatalytic reactor at conditions optimized by response surface methodology (statistical model) and upon exposure to solar radiation (within 180 min) degraded 100% (1.44 kg/m3/day) AB 1dye into simpler hydrocarbons, confirmed by the disappearance of dye color and Fourier transform infrared spectroscopy. An 80% reduction in water quality parameters defines Cr-Mn-doped TiO2 NW @GO aerogels as a potential photocatalytic membrane to degrade highly toxic pollutants.

3.
Article in English | MEDLINE | ID: mdl-35055594

ABSTRACT

Open disposal is the most common technique used for municipal solid waste (MSW) management due to the absence of sanitary landfills in Pakistan. The major cities and small towns in Pakistan have become a showcase of negligence and mismanagement of MSW, which results in deterioration of the environmental and social-life quality. Moreover, research has proved that inefficient handling (disposal) of MSW results in uncontrolled emissions of greenhouse gases (GHGs), mainly methane, and adds a significant share in global climate change. This study aims to estimate methane emissions from MSW disposed of at dumpsites and compare the GHG mitigation potential of different landfill strategies in specific climate and waste compositions in Karachi. The GHG estimations are based on lab-scale investigations conducted by simulating landfill conditions through the landfill simulation reactor (LSR) experiment. The synthetic MSW sample representing the composition of MSW generated in Karachi was used in the LSR experiment. Environmental sustainability and GHG mitigation potential of different landfilling strategies was evaluated by analyzing gas formation potential (GP21) and respiration activity (RI4) at the end of the experiment. This study revealed that the quantity of solid waste annually disposed of at dumpsites in Karachi possesses the potential to release about 3.9 Mt CO2-eq. methane (with specific methane potential of 1.8 tCO2-eq./tonne DM disposed) due to the biological decomposition of the organic fraction. Results show that the fresh waste disposed of at landfill sites in Karachi possesses about 92% and 94% higher GP21 and RI4, respectively, than the German allocated criteria for mechanically and biologically treated (MBT) waste for landfills Furthermore, sanitary landfills with post-aeration conditions showed higher GHG mitigation potential and low biological activity in the waste. The second highest GHG mitigation potential and lowest biological activity of the waste was noticed from bioreactor landfills with post-aeration conditions. The third number in GHG mitigation and reduced waste activity was noticed in the waste sampled from bioreactors without aftercare approach. The least GHG mitigation potential was noticed from the uncontrolled waste dumping (existing) approach with high residual gas potential and respiration index level. This lab-scale landfill simulation study can provide baseline data for further research and planning the development of new sustainable landfills in Karachi, Pakistan and in the region.


Subject(s)
Refuse Disposal , Waste Management , Pakistan , Refuse Disposal/methods , Solid Waste/analysis , Waste Disposal Facilities , Waste Management/methods
4.
Open Res Eur ; 2: 101, 2022.
Article in English | MEDLINE | ID: mdl-38420136

ABSTRACT

Background: The acceptance of compostable plastic packaging in industrial composting plants is not universal despite available certification due to the persistence of plastic residues after composting. To better understand this discrepancy, this study compared the disintegration rates of two blends designed for rigid packaging (polylactic acid based) and soft packaging (polybutylene succinate based) in lab-scale composting tests and in an industrial composting plant. Methods: A lab-scale composting test was conducted in triplicates according to ISO 20200 for 4, 8 and 12 weeks to check the disintegration potential of the blends. Duplicate test material were then exposed in the compost pile of an industrial composting plant for a duration of 3 weeks and compared with a supplementary lab-scale test of the same duration. Results: The rigid packaging samples (1 mm thickness) retained on average 76.4%, 59.0% and 55.7% of its mass after 4, 8 and 12 weeks respectively in the lab-scale. In the plant, the average remaining mass was 98.3%, much higher compared to the average of 68.9% after 3 weeks in the supplementary lab-scale test. The soft packaging samples (109±9 µm sample thickness) retained on average 45.4%, 10.9% and 0.3% of its mass after 4, 8 and 12 weeks respectively in the lab-scale. In the plant, a high average remaining mass was also observed (93.9%). The supplementary lab-scale test showed similar remaining mass but higher fragmentation after 3 weeks. Conclusions: The results show that the samples achieved significant disintegration in the lab-scale but not in the plant. The difference between the tests that might further contribute to the differing degradation rates is the composition and heterogeneity of the composting substrate. Therefore, the substrate composition and thermophilic composting duration of individual plants are important considerations to determine the suitability of treating compostable plastic in real-world conditions.


There is resistance from industrial composting plants to the treatment of compostable biodegradable plastics. This study aims to compare the disintegration rates of two new biodegradable plastic blends developed for rigid and soft packaging applications in controlled industrial composting conditions in the lab as well as under actual industrial composting conditions in a composting plant. Results show significant disintegration of the material in the lab-scale up to 12 weeks. However, there were notable differences in the degree of disintegration of the samples in the lab compared to real-world conditions after 3 weeks. The 1 mm thick polylactic acid-based blend for rigid packaging experienced much higher disintegration in the lab with 68.9% remaining mass after 3 weeks compared to 97.2% remaining mass in the industrial composting plant. The 109 µm thick polybutylene succinate-based blend for soft packaging had similar remaining masses comparing the lab and full-scale tests. However, the lab-test showed higher fragmentation after 3 weeks. The characteristics of the organic waste inputs are potential causes of the lower disintegration rates. The study highlights the need to better understand the real-world industrial composting conditions and their variations when evaluating composting as a treatment method for biodegradable plastics.

5.
Sci Total Environ ; 773: 145584, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33582327

ABSTRACT

Sustainable completion of municipal solid waste landfills requires post-closure care after a time when utilization of landfill gas produced from biodecomposition of organic waste be not possible/or economically feasible. Research proved that in-situ aeration is a promising approach employed for landfill aftercare. The application of post aeration operation is targeted to achieve accelerated waste stabilization to avoid long term environmental and public health impacts from landfills. In in-situ aeration operation, consumption of supplied oxygen has significant influence on biological stabilization of solid waste placed in the landfills. The consumption of oxygen is regulated by operation parameters of landfill - one of the important is presence of moisture in landfill ecosystem. This research aims to assess the influence of moisture content and leachate recirculation on the oxygen consumption during post aeration phase of landfill operation. The effect of oxygen consumption on the extent of waste stabilization achieved after experiment was also assessed. Three lab-scale landfill simulation reactors (LSRs) were used - in two of three reactors (LSR-1 and LSR-3) operation was carried out in two phases: Anaerobic and post-aeration. One reactor (LSR-2) was operated under anaerobic condition throughout the experiment and used as control. To compare the oxygen consumption, conventional landfill (CLF) conditions without excess water addition and leachate recirculation were simulated in LSR-1 and the bioreactor landfill conditions (BRLF) with excess water injection and leachate recirculation were simulated in LSR-3. In CLF 46.4% of supplied oxygen was consumed during post aeration phase while in BRLF only 0.96% of oxygen consumption was noticed. In result of higher oxygen consumption, biostabilization rate of waste in CLF was 7% higher than BRLF at the end of experiment. This study demonstrated that, in presence of low moisture in landfill ecosystem optimal air distribution can be realized which results in enhanced waste oxidization and stabilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...