Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement ; 15(6): 776-787, 2019 06.
Article in English | MEDLINE | ID: mdl-31047856

ABSTRACT

INTRODUCTION: Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a "Holy Grail" of AD research and intensively sought; however, there are no well-established plasma markers. METHODS: A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed. RESULTS: Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APOε4 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71). DISCUSSION: Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation.


Subject(s)
Alzheimer Disease , Biomarkers/blood , Cognitive Dysfunction , Inflammation , Aged , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnosis , Cohort Studies , Complement Factor B , Complement Factor H , Humans , Internationality , Prognosis
2.
Neurobiol Aging ; 53: 36-47, 2017 05.
Article in English | MEDLINE | ID: mdl-28208064

ABSTRACT

Although mitochondrial dysfunction is a consistent feature of Alzheimer's disease in the brain and blood, the molecular mechanisms behind these phenomena are unknown. Here we have replicated our previous findings demonstrating reduced expression of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and subunits required for the translation of mitochondrial-encoded OXPHOS genes in blood from people with Alzheimer's disease and mild cognitive impairment. Interestingly this was accompanied by increased expression of some mitochondrial-encoded OXPHOS genes, namely those residing closest to the transcription start site of the polycistronic heavy chain mitochondrial transcript (MT-ND1, MT-ND2, MT-ATP6, MT-CO1, MT-CO2, MT-C03) and MT-ND6 transcribed from the light chain. Further we show that mitochondrial DNA copy number was unchanged suggesting no change in steady-state numbers of mitochondria. We suggest that an imbalance in nuclear and mitochondrial genome-encoded OXPHOS transcripts may drive a negative feedback loop reducing mitochondrial translation and compromising OXPHOS efficiency, which is likely to generate damaging reactive oxygen species.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/genetics , Genes, Mitochondrial/genetics , Mitochondria/genetics , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/genetics , Female , Gene Expression , Humans , Male , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...