Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int Rev Cell Mol Biol ; 324: 67-124, 2016.
Article in English | MEDLINE | ID: mdl-27017007

ABSTRACT

The complex relationship between microbiota, human physiology, and environmental perturbations has become a major research focus, particularly with the arrival of culture-free and high-throughput approaches for studying the microbiome. Early enthusiasm has come from results that are largely correlative, but the correlative phase of microbiome research has assisted in defining the key questions of how these microbiota interact with their host. An emerging repertoire for engineering the microbiome places current research on a more experimentally grounded footing. We present a detailed look at the interplay between microbiota and host and how these interactions can be exploited. A particular emphasis is placed on unstable microbial communities, or dysbiosis, and strategies to reestablish stability in these microbial ecosystems. These include manipulation of intermicrobial communication, development of designer probiotics, fecal microbiota transplantation, and synthetic biology.


Subject(s)
Genetic Engineering , Microbiota , Animals , Bioethics , Humans , Models, Biological , Social Control, Formal
2.
Conf Proc IEEE Eng Med Biol Soc ; 2005: 7588-90, 2005.
Article in English | MEDLINE | ID: mdl-17282037

ABSTRACT

DNA base damage results from a combination of endogenous sources, (normal metabolism, increased metabolism due to obesity, stress from diseases such as arthritis and diabetes, and ischemia) and the environment (ingested toxins, ionizing radiation, etc.). If unrepaired DNA base damage can lead to diminished cell function, and potentially diseases and eventually mutations that lead to cancer. Sophisticated DNA repair mechanisms have evolved in all living cells to preserve the integrity of inherited genetic information and transcriptional control. Understanding a system like DNA repair is greatly enhanced by using engineering methods, in particular modeling interactions and using predictive simulation to analyze the impact of perturbations. We describe the use of such a "nanosystem engineering" approach to analyze the DNA base excision repair pathway in human cells, and use simulation to predict the impact of varying enzyme concentration on DNA repair capacity.

SELECTION OF CITATIONS
SEARCH DETAIL