Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 31(48): 13107-16, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26566168

ABSTRACT

Recent studies have shown the potential of water-repellent surfaces such as superhydrophobic surfaces in delaying ice accretion and reducing ice adhesion. However, conflicting trends in superhydrophobic ice adhesion strength were reported by previous studies. Hence, this investigation was performed to study the ice adhesion strength of hydrophobic and superhydrophobic coatings under realistic atmospheric icing conditions, i.e., supercooled spray of 20 µm mean volume diameter (MVD) droplets in a freezing (-20 °C), thermally homogeneous environment. The ice was released in a tensile direction by underside air pressure in a Mode-1 ice fracture condition. Results showed a strong effect of water repellency (increased contact and receding angles) on ice adhesion strength for hydrophobic surfaces. However, the extreme water repellency of nanocomposite superhydrophobic surfaces did not provide further adhesion strength reductions. Rather, ice adhesion strength for superhydrophobic surfaces depended primarily on the surface topology spatial parameter of autocorrelation length (Sal), whereby surface features in close proximities associated with a higher capillary pressure were better able to resist droplet penetration. Effects from other surface height parameters (e.g., arithmetic mean roughness, kurtosis, and skewness) were secondary.

SELECTION OF CITATIONS
SEARCH DETAIL
...