Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Autophagy ; : 1-3, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38934263

ABSTRACT

A multitude of cellular responses to intrinsic and extrinsic signals converge on macroautophagy/autophagy, a conserved catabolic process that degrades cytoplasmic constituents and organelles in the lysosome, particularly during starvation or stress. In addition to protein degradation, autophagy is deeply interconnected with unconventional protein secretion and polarized sorting at multiple levels within eukaryotic cells. Secretory autophagy (SA) has been recognized as a novel mechanism in which autophagosomes fuse with the plasma membrane and actively participate in the secretion of a series of cytosolic proteins, ranging from tissue remodeling factors to inflammatory molecules of the IL1 family. SA is partially controlled by the glucocorticoid-responsive, HSP90 co-chaperone FKBP5 and members of the SNARE proteins, SEC22B, SNAP23, SNAP29, STX3 and STX4. SA deregulation is implicated in several inflammatory pathologies, including cancer, cell death and degeneration. However, the key molecular mechanisms governing SA and its regulation remain elusive, as does its role in neuroinflammation and neurodegeneration. To further characterize SA and pinpoint its involvement in neuroinflammatory processes, we studied SA-relevant protein interaction networks in mouse brain, microglia and human postmortem brain tissue from control subjects and Alzheimer disease cases. We demonstrate that SA regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling.

2.
J Cell Biochem ; 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37098699

ABSTRACT

Glucocorticoids (GCs) actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associated to different diseases including mood disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity. FKBP51 exerts effects on many stress-related pathways and may be an important mediator of emotional behavior. Key proteins involved in the regulation of the stress response and antidepressant action are regulated by SUMOylation, a post-translational modification that has an important role in the regulation of neuronal physiology and disease. In this review, we focus on the role of SUMO-conjugation as a regulator of this pathway.

3.
Mol Psychiatry ; 27(5): 2533-2545, 2022 05.
Article in English | MEDLINE | ID: mdl-35256747

ABSTRACT

FKBP51 is an important inhibitor of the glucocorticoid receptor (GR) signaling. High FKBP51 levels are associated to stress-related disorders, which are linked to GR resistance. SUMO conjugation to FKBP51 is necessary for FKBP51's inhibitory action on GR. The GR/FKBP51 pathway is target of antidepressant action. Thus we investigated if these drugs could inhibit FKBP51 SUMOylation and therefore restore GR activity. Screening cells using Ni2+ affinity and in vitro SUMOylation assays revealed that tricyclic antidepressants- particularly clomipramine- inhibited FKBP51 SUMOylation. Our data show that clomipramine binds to FKBP51 inhibiting its interaction with PIAS4 and therefore hindering its SUMOylation. The inhibition of FKBP51 SUMOylation decreased its binding to Hsp90 and GR facilitating FKBP52 recruitment, and enhancing GR activity. Reduction of PIAS4 expression in rat primary astrocytes impaired FKBP51 interaction with GR, while clomipramine could no longer exert its inhibitory action. This mechanism was verified in vivo in mice treated with clomipramine. These results describe the action of antidepressants as repressors of FKBP51 SUMOylation as a molecular switch for restoring GR sensitivity, thereby providing new potential routes of antidepressant intervention.


Subject(s)
Receptors, Glucocorticoid , Sumoylation , Animals , Antidepressive Agents, Tricyclic/pharmacology , Clomipramine , Gene Expression Regulation , Mice , Rats , Receptors, Glucocorticoid/metabolism , Tacrolimus Binding Proteins/metabolism
4.
Steroids ; 153: 108520, 2020 01.
Article in English | MEDLINE | ID: mdl-31604074

ABSTRACT

In order to adequately respond to stressful stimuli, glucocorticoids (GCs) target almost every tissue of the body. By exerting a negative feedback loop in the hypothalamic-pituitary-adrenal (HPA) axis GCs inhibit their own synthesis and restore homeostasis. GCs actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associatedto different diseases including mood disorders and can lead to severe complication. Therefore, understanding the molecular complexity of GR modulation is mandatory for the development of new and effective drugs for treating GR-associated disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity and has a crucial role in psychiatric diseases. Both GR and FKBP51 activity are regulated by SUMOylation, a posttranslational (PTM). In this review, we focus on the impact of SUMO-conjugation as a regulator of this pathway.


Subject(s)
Receptors, Glucocorticoid/metabolism , Stress, Physiological , Tacrolimus Binding Proteins/metabolism , Ubiquitin-Activating Enzymes/metabolism , Animals , Humans
5.
Article in English | MEDLINE | ID: mdl-29867767

ABSTRACT

Glucocorticoids (GCs) play an important role in regulating the inflammatory and immune response and have been used since decades to treat various inflammatory and autoimmune disorders. Fine-tuning the glucocorticoid receptor (GR) activity is instrumental in the search for novel therapeutic strategies aimed to reduce pathological signaling and restoring homeostasis. Despite the primary anti-inflammatory actions of GCs, there are studies suggesting that under certain conditions GCs may also exert pro-inflammatory responses. For these reasons the understanding of the GR basic mechanisms of action on different immune cells in the periphery (e.g., macrophages, dendritic cells, neutrophils, and T cells) and in the brain (microglia) contexts, that we review in this chapter, is a continuous matter of interest and may reveal novel therapeutic targets for the treatment of immune and inflammatory response.

SELECTION OF CITATIONS
SEARCH DETAIL
...