Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837941

ABSTRACT

The absolute band edge positions and work function (Φ) are the key electronic properties of metal oxides that determine their performance in electronic devices and photocatalysis. However, experimental measurements of these properties often show notable variations, and the mechanisms underlying these discrepancies remain inadequately understood. In this work, we focus on ceria (CeO2), a material renowned for its outstanding oxygen storage capacity, and combine theoretical and experimental techniques to demonstrate environmental modifications of its ionization potential (IP) and Φ. Under O-deficient conditions, reduced ceria exhibits a decreased IP and Φ with significant sensitivity to defect distributions. In contrast, the IP and Φ are elevated in O-rich conditions due to the formation of surface peroxide species. Surface adsorbates and impurities can further augment these variabilities under realistic conditions. We rationalize the shifts in energy levels by separating the individual contributions from bulk and surface factors, using hybrid quantum mechanical/molecular mechanical (QM/MM) embedded-cluster and periodic density functional theory (DFT) calculations supported by interatomic-potential-based electrostatic analyses. Our results highlight the critical role of on-site electrostatic potentials in determining the absolute energy levels in metal oxides, implying a dynamic evolution of band edges under catalytic conditions.

2.
Angew Chem Int Ed Engl ; 62(40): e202308411, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37503936

ABSTRACT

Determining the absolute band edge positions in solid materials is crucial for optimising their performance in wide-ranging applications including photocatalysis and electronic devices. However, obtaining absolute energies is challenging, as seen in CeO2 , where experimental measurements show substantial discrepancies in the ionisation potential (IP). Here, we have combined several theoretical approaches, from classical electrostatics to quantum mechanics, to elucidate the bulk and surface contributions to the IP of metal oxides. We have determined a theoretical bulk contribution to the IP of stoichiometric CeO2 of only 5.38 eV, while surface orientation results in intrinsic IP variations ranging from 4.2 eV to 8.2 eV. Highly tuneable IPs were also found in TiO2 , ZrO2 , and HfO2 , in which surface polarisation plays a pivotal role in long-range energy level shifting. Our analysis, in addition to rationalising the observed range of experimental results, provides a firm basis for future interpretations of experimental and computational studies of oxide band structures.

3.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220234, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37211033

ABSTRACT

Vibrational spectroscopy is one of the most well-established and important techniques for characterizing chemical systems. To aid the interpretation of experimental infrared and Raman spectra, we report on recent theoretical developments in the ChemShell computational chemistry environment for modelling vibrational signatures. The hybrid quantum mechanical and molecular mechanical approach is employed, using density functional theory for the electronic structure calculations and classical forcefields for the environment. Computational vibrational intensities at chemical active sites are reported using electrostatic and fully polarizable embedding environments to achieve more realistic vibrational signatures for materials and molecular systems, including solvated molecules, proteins, zeolites and metal oxide surfaces, providing useful insight into the effect of the chemical environment on the signatures obtained from experiment. This work has been enabled by the efficient task-farming parallelism implemented in ChemShell for high-performance computing platforms.  This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

4.
Phys Chem Chem Phys ; 25(33): 21816-21835, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37097706

ABSTRACT

Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.

5.
Chem Mater ; 35(1): 207-227, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36644213

ABSTRACT

Polarizable shell-model potentials are widely used for atomic-scale modeling of charged defects in solids using the Mott-Littleton approach and hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) embedded-cluster techniques. However, at the pure MM level of theory, the calculated defect energetics may not satisfy the requirement of quantitative predictions and are limited to only certain charged states. Here, we proposed a novel interatomic potential development scheme that unifies the predictions of all relevant charged defects in CeO2 based on the Mott-Littleton approach and QM/MM electronic-structure calculations. The predicted formation energies of oxygen vacancies accompanied by different excess electron localization patterns at the MM level of theory reach the accuracy of density functional theory (DFT) calculations using hybrid functionals. The new potential also accurately reproduces a wide range of physical properties of CeO2, showing excellent agreement with experimental and other computational studies. These findings provide opportunities for accurate large-scale modeling of the partial reduction and nonstoichiometry in CeO2, as well as a prototype for developing robust interatomic potentials for other defective crystals.

6.
J Am Chem Soc ; 145(1): 247-259, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36548055

ABSTRACT

The copper-exchanged zeolite Cu-CHA has received considerable attention in recent years, owing to its application in the selective catalytic reduction (SCR) of NOx species. Here, we study the NH3-SCR reaction mechanism on Cu-CHA using the hybrid quantum mechanical/molecular mechanical (QM/MM) technique and investigate the effects of solvent on the reactivity of active Cu species. To this end, a comparison is made between water- and ammonia-solvated and bare Cu species. The results show the promoting effect of solvent on the oxidation component of the NH3-SCR cycle since the formation of important nitrate species is found to be energetically more favorable on the solvated Cu sites than in the absence of solvent molecules. Conversely, both solvent molecules are predicted to inhibit the reduction component of the NH3-SCR cycle. Diffuse reflectance infrared fourier-transform spectroscopy (DRIFTS) experiments exploiting (concentration) modulation excitation spectroscopy (MES) and phase-sensitive detection (PSD) identified spectroscopic signatures of Cu-nitrate and Cu-nitrosamine (H2NNO), important species which had not been previously observed experimentally. This is further supported by the QM/MM-calculated harmonic vibrational analysis. Additional insights are provided into the reactivity of solvated active sites and the formation of key intermediates including their formation energies and vibrational spectroscopic signatures, allowing the development of a detailed understanding of the reaction mechanism. We demonstrate the role of solvated active sites and their influence on the energetics of important species that must be explicitly considered for an accurate understanding of NH3-SCR kinetics.


Subject(s)
Nitrates , Zeolites , Ammonia/chemistry , Zeolites/chemistry , Solvents , Nitrogen Oxides/chemistry , Magnetic Resonance Spectroscopy , Catalysis
7.
Front Chem ; 9: 780935, 2021.
Article in English | MEDLINE | ID: mdl-34970531

ABSTRACT

Cu impurities are reported to have significant effects on the electrical and optical properties of bulk ZnO. In this work, we study the defect properties of Cu in ZnO using hybrid quantum mechanical/molecular mechanical (QM/MM)-embedded cluster calculations based on a multi-region approach that allows us to model defects at the true dilute limit, with polarization effects described in an accurate and consistent manner. We compute the electronic structure, energetics, and geometries of Cu impurities, including substitutional and interstitial configurations, and analyze their effects on the electronic structure. Under ambient conditions, CuZn is the dominant defect in the d9 state and remains electronically passive. We find that, however, as we approach typical vacuum conditions, the interstitial Cu defect becomes significant and can act as an electron trap.

8.
Phys Chem Chem Phys ; 23(35): 19329-19342, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34524332

ABSTRACT

We report a detailed density functional theory (DFT) study of the geometrical and electronic properties, and the growth mechanism of a Cun (n = 1-4) cluster on a stoichiometric, and especially on a defective CeO2(110) surface with one surface oxygen vacancy, without using pre-assumed gas-phase Cun cluster shapes. This gives new and valuable theoretical insight into experimental work regarding debatable active sites of promising CuOx/CeO2-nanorod catalysts in many reactions. We demonstrate that CeO2(110) is highly reducible upon Cun adsorption, with electron transfer from Cun clusters, and that a Cun cluster grows along the long bridge sites until Cu3, so that each Cu atom can interact strongly with surface oxygen ions at these sites, forming stable structures on both stoichiometric and defective CeO2(110) surface. Cu-Cu interactions are, however, limited, since Cu atoms are distant from each other, inhibiting the formation of Cu-Cu bonds. This monolayer then begins to grow into a bilayer as seen in the Cu3 to Cu4 transition, with long-bridge site Cu as anchoring sites. Our calculations on Cu4 adsorption reveal a Cu bilayer rich in Cu+ species at the Cu-O interface.

9.
Nanoscale Adv ; 1(1): 89-93, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-36132445

ABSTRACT

We report a new class of carbon nanostructures at a lower sub-nano end of the size scale with a surprising stability, as compared to the well-known carbon fullerenes. The octahedral carbon clusters contain tetragonal rings, which, in spite of a common belief, prove to be an energy efficient means of plying graphene sheets to make three-dimensional spheroid shapes, similar to fullerenes. The two families of structures are shown to be competitive at small sizes (∼20 atoms) at room temperature, and for higher temperatures, at both small and large sizes (>200 atoms). Our calculations demonstrate that both vibrational and electronic spectra of these cluster families are similar, which thus might cloud their experimental identification. However, there is a sufficiently strong shift in vibrational frequencies below 160 and in the range of 600-800 cm-1, which should help to identify different types of carbon clusters experimentally. We propose octahedral clusters and other structures containing tetragonal rings as viable structural elements and building units in inorganic chemistry and materials science of carbon along with fullerenes.

10.
J Chem Theory Comput ; 15(2): 1317-1328, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30511845

ABSTRACT

ChemShell is a scriptable computational chemistry environment with an emphasis on multiscale simulation of complex systems using combined quantum mechanical and molecular mechanical (QM/MM) methods. Motivated by a scientific need to efficiently and accurately model chemical reactions on surfaces and within microporous solids on massively parallel computing systems, we present a major redevelopment of the ChemShell code, which provides a modern platform for advanced QM/MM embedding models. The new version of ChemShell has been re-engineered from the ground up with a new QM/MM driver module, an improved parallelization framework, new interfaces to high performance QM and MM programs, and a user interface written in the Python programming language. The redeveloped package is capable of performing QM/MM calculations on systems of significantly increased size, which we illustrate with benchmarks on zirconium dioxide nanoparticles of over 160000 atoms.

11.
Nat Mater ; 17(11): 958-964, 2018 11.
Article in English | MEDLINE | ID: mdl-30275565

ABSTRACT

The concepts of oxidation state and atomic charge are entangled in modern materials science. We distinguish between these quantities and consider their fundamental limitations and utility for understanding material properties. We discuss the nature of bonding between atoms and the techniques that have been developed for partitioning electron density. While formal oxidation states help us count electrons (in ions, bonds, lone pairs), variously defined atomic charges are usefully employed in the description of physical processes including dielectric response and electronic spectroscopies. Such partial charges are introduced as quantitative measures in simple mechanistic models of a more complex reality, and therefore may not be comparable or transferable. In contrast, oxidation states are defined to be universal, with deviations constituting exciting challenges as evidenced in mixed-valence compounds, electrides and highly correlated systems. This Perspective covers how these concepts have evolved in recent years, our current understanding and their significance.

12.
Faraday Discuss ; 211(0): 593-611, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30067264

ABSTRACT

To address the question posed in the title, we have created, and now report details of, an open-access database of cluster structures with a web-assisted interface and toolkit as part of the WASP@N project. The database establishes a map of connectivities within each structure, the information about which is coded and kept as individual labels, called hashkeys, for the nanoclusters. These hashkeys are the basis for structure comparison within the database, and for establishing a map of connectivities between similar structures (topologies). The database is successfully used as a key element in a data-mining study of (MX)12 clusters of three binary compounds (LiI, SrO and GaAs) of which the database has no prior knowledge. The structures are assessed on the energy landscapes determined by the corresponding bulk interatomic potentials. Global optimisation, using a Lamarckian genetic algorithm, is used to search for low lying minima on the same energy landscape to confirm that the data-mined structures form a representative sample of the landscapes, with only very few structures missing from the close energy neighbourhood of the respective global minima.

13.
Phys Chem Chem Phys ; 20(20): 13962-13973, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29744486

ABSTRACT

We have performed a genetic algorithm search on the tight-binding interatomic potential energy surface (PES) for small TiN (N = 2-32) clusters. The low energy candidate clusters were further refined using density functional theory (DFT) calculations with the PBEsol exchange-correlation functional and evaluated with the PBEsol0 hybrid functional. The resulting clusters were analysed in terms of their structural features, growth mechanism and surface area. The results suggest a growth mechanism that is based on forming coordination centres by interpenetrating icosahedra, icositetrahedra and Frank-Kasper polyhedra. We identify centres of coordination, which act as centres of bulk nucleation in medium sized clusters and determine the morphological features of the cluster.

15.
Nanoscale ; 9(11): 3850-3864, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28252128

ABSTRACT

We have developed and implemented a new global optimization technique based on a Lamarckian genetic algorithm with the focus on structure diversity. The key process in the efficient search on a given complex energy landscape proves to be the removal of duplicates that is achieved using a topological analysis of candidate structures. The careful geometrical prescreening of newly formed structures and the introduction of new mutation move classes improve the rate of success further. The power of the developed technique, implemented in the Knowledge Led Master Code, or KLMC, is demonstrated by its ability to locate and explore a challenging double funnel landscape of a Lennard-Jones 38 atom system (LJ38). We apply the redeveloped KLMC to investigate three chemically different systems: ionic semiconductor (ZnO)1-32, metallic Ni13 and covalently bonded C60. All four systems have been systematically explored on the energy landscape defined using interatomic potentials. The new developments allowed us to successfully locate the double funnels of LJ38, find new local and global minima for ZnO clusters, extensively explore the Ni13 and C60 (the buckminsterfullerene, or buckyball) potential energy surfaces.

16.
Phys Chem Chem Phys ; 18(41): 28648-28660, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27722292

ABSTRACT

We have investigated the energetic properties of Mn-doped MgO bulk and (100) surfaces using a QM/MM embedding computational method, calculating the formation energy for doped systems, as well as for surface defects, and the subsequent effect on chemical reactivity. Low-concentration Mn doping is endothermic for isovalent species in the bulk but exothermic for higher oxidation states under p-type conditions, and compensated by electrons going to the Fermi level rather than cation vacancies. The highest occupied dopant Mn 3d states are positioned in the MgO band gap, about 4.2 eV below the vacuum level. Surface Mn-doping is more favourable than subsurface doping, and marginally exothermic on a (100) surface at high O2 pressures. For both types of isovalent Mn-doped (100) surfaces, the formation energy for catalytically important oxygen defects is less than for pristine MgO, with F0 and F2+-centres favoured in n- and p-type conditions, respectively. In addition, F+-centres are stabilised by favourable exchange coupling between the Mn 3d states and the vacancy-localised electrons, as verified through calculation of the vertical ionisation potential. The adsorption of CO2 on to the pristine and defective (100) surface is used as a probe of chemical reactivity, with isovalent subsurface Mn dopants mildly affecting reactivity, whereas isovalent surface-positioned Mn strongly alters the chemical interactions between the substrate and adsorbate. The differing chemical reactivity, when compared to pristine MgO, justifies further detailed investigations for more varied oxidation states and dopant species.

17.
Phys Rev Lett ; 117(7): 075502, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563974

ABSTRACT

The layered semiconductor SnSe is one of the highest-performing thermoelectric materials known. We demonstrate, through a first-principles lattice-dynamics study, that the high-temperature Cmcm phase is a dynamic average over lower-symmetry minima separated by very small energetic barriers. Compared to the low-temperature Pnma phase, the Cmcm phase displays a phonon softening and enhanced three-phonon scattering, leading to an anharmonic damping of the low-frequency modes and hence the thermal transport. We develop a renormalization scheme to quantify the effect of the soft modes on the calculated properties, and confirm that the anharmonicity is an inherent feature of the Cmcm phase. These results suggest a design concept for thermal insulators and thermoelectric materials, based on displacive instabilities, and highlight the power of lattice-dynamics calculations for materials characterization.

18.
Nanoscale ; 6(24): 14754-65, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25354937

ABSTRACT

We employ global optimisation to investigate how oxide nanoclusters of increasing size can best adapt their structure to lower the system energy when interacting with a realistic extended metal support. Specifically, we focus on the (ZnO)@Ag(111) system where experiment has shown that the infinite Ag(111)-supported ZnO monolayer limit corresponds to an epitaxially 7 : 8 matched graphene-like (Zn(3)O(3))-based hexagonal sheet. Using a two-stage search method based on classical interatomic potentials and then on more accurate density functional theory, we report global minina candidate structures for Ag-supported (ZnO)n cluster with sizes ranging from n = 1-24. Comparison with the respective global minina structure of free space (ZnO)n clusters reveals that the surface interaction plays a decisive role in determining the lowest energy Ag-supported (ZnO)n cluster structures. Whereas free space (ZnO)n clusters tend to adopt cage-like bubble structures as they grow larger, Ag-supported (ZnO)n clusters of increasing size become progressively more like planar cuts from the infinite graphene-like ZnO single monolayer. This energetic favourability for planar hexagonal Ag-supported clusters over their 3D counterparts can be partly rationalised by the ZnO-Ag(111) epitaxial matching and the increased number of close interactions with the Ag surface. Detailed analysis shows that this tendency can also be attributed to the capacity of 2D clusters to distort to improve their interaction with the Ag surface relative to more rigid 3D bubble cluster isomers. For the larger sized clusters we find that the adsorption energies and most stable structural types appear to be rather converged confirming that our study makes a bridge between the Ag-supported ZnO monomer and the infinite Ag-supported ZnO monolayer.

19.
Adv Mater ; 26(42): 7252-6, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25196987

ABSTRACT

Global optimization is used to study the structure of the polar KTaO3 (001) surface. It is found that cation exchange near the surface leads to the most stable structure. This mechanism is likely to be general to metal oxides containing cations of differing charge.

20.
J Chem Phys ; 141(2): 024105, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25027997

ABSTRACT

We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).

SELECTION OF CITATIONS
SEARCH DETAIL
...