Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234039

ABSTRACT

Class C fly ash has been receiving increasing attention due to the gradual transition of thermal power plants all over the world to the fluidized bed combustion technology with sulfur dioxide emissions capture. This research investigates the utilization of class C fly ash in fired ceramic materials with simultaneous efficient and novel containment of sulfur dioxide emissions in the flue gas during firing. A number of experiments were conducted by addition of sodium water glass with different molar ratios of SiO2:Na2O, sodium carbonate, and different ratios of sodium carbonate to water glass to the class C fly ash to examine the optimal combination and quantity for the creation and formation of the mineral phase haüyne which resulted in reduction and containment of SO2 emissions. Results revealed that a 12% dose of sodium water glass with a low molar ratio of 1.7 (SiO2:Na2O) combined with class C fly ash was more effective in the formation of haüyne and the resulting decrease of SO2 in the flue gas was more substantial. The newly formed mineral phase haüyne was identified by an X-ray diffraction analysis and scanning electron microscopy with energy dispersive X-ray spectroscopy. Outcomes reveal a potential for utilization of class C fly ash in the fired materials by containment of sulfur dioxide into their structure.

2.
Materials (Basel) ; 15(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35207911

ABSTRACT

This article aims to investigate the corrosion resistance of novel fly ash-based forsterite-spinel (Mg2SiO4-MgAl2O4) refractory ceramics to various corrosive media in comparison with reactive alumina-based ceramics. Because fly ash is produced in enormous quantities as a byproduct of coal-burning power stations, it could be utilized as an affordable source of aluminum oxide and silicon oxide. Corrosion resistance to iron, clinker, alumina, and copper was observed by scanning electron microscope with an elemental probe. The influence on the properties after firing was also investigated. Fly ash-based and reactive alumina-based mixtures were designed to contain 10%, 15% and 20% of spinel after firing. Raw material mixtures were sintered at 1550 °C for two hours. X-ray diffraction analysis and scanning electron microscopy were used to analyze sintered samples. The apparent porosity, bulk density, modulus of rupture, and refractory and thermo-mechanical properties were also investigated. The experimental results disclosed that the modulus of rupture, thermal shock resistance and microstructure were improved with increasing amounts of spinel in the fired samples. An analysis of the transition zones between corrosive media and ceramics revealed that all mixtures have good resistance against corrosion to iron, clinker, aluminum and copper.

3.
Materials (Basel) ; 15(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35207924

ABSTRACT

In this study, the potential use of waste diatomaceous earth from the production of diatomaceous earth for filtration purposes, as an alternative raw material for foam glass production, was explored. The chemical and mineralogical composition and the high temperature behavior of waste diatomite were studied to assess its suitability for foam glass production. Glass-ceramic foams were prepared using NaOH solution as a foaming agent, via a hydrate mechanism. The influence of different pretreatments and firing temperatures on the foam's structure, bulk density and compressive strength was investigated. High temperature behavior was studied using TG/DTA analysis and high temperature microscopy. Phase composition was studied using X-ray diffraction analysis. Glass-ceramic foam samples of a high porosity comparable to conventional foam glass products were fabricated. The pretreatment temperature, foaming temperature and sintering holding time were found to have a significant influence on foam properties. With increased pretreatment temperature, pyrogenic carbon from the thermal decomposition of organic matter contained in the raw material acted as an additional foaming agent and remained partially unoxidized in prepared foams. The bulk densities of prepared samples ranged from 150 kg/m3 to 510 kg/m3 and their compressive strengths were between 140 and 1270 kPa.

4.
Materials (Basel) ; 14(11)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071071

ABSTRACT

The main aim of the presented article is to describe the behavior of class C fly ash-kaolin plastic doughs during the ageing process. Class C fly ash (CCFA) from the fluidized technology of fuel combustion in a thermal power plant was used as a non-plastic admixture to modify the plasticity in a kaolin-quartz sand mixture (for example, the base of a porcelain mixture). The ageing of plastic ceramic dough determined the effect of the CCFA admixture (0-10-20 wt. %) on the initial water content, plasticity (according to the Pfefferkorn test) and bulk density of a dried green body. The main feature of the CCFA admixture in the kaolin-quartz sand mixture is a solidifying effect. Fly ash increases the initial (mixing) water for the preparation of ceramic dough with constant plasticity (30 mm height of deformed cone Hf, according to the Pfefferkorn test), and Hf increases as the dough ages (the dough solidifies faster and loses its plasticity) with the addition of class C fly ash. The effect of CCFA addition on the plasticity and ageing of kaolin-quartz sand dough is documented on Bigot curves: higher content of fly ash decreases the drying shrinkage of the plastic dough, especially when drying samples that have been aged for 24 h in a plastic wrap (without the possibility of drying). The plastic dough's ageing increases the porosity of the dried green body with increased content of CCFA in the raw materials mixture and increased ageing time.

SELECTION OF CITATIONS
SEARCH DETAIL
...