Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Neuroimage ; 275: 120187, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37230205

ABSTRACT

Transcranial alternating current stimulation (tACS) can influence perception and behavior, with recent evidence also highlighting its potential impact in clinical settings, but its underlying mechanisms are poorly understood. Behavioral and indirect physiological evidence indicates that phase-dependent constructive and destructive interference between the applied electric field and brain oscillations at the stimulation frequency may play an important role, but in vivo validation during stimulation was unfeasible because stimulation artifacts impede single-trial assessment of brain oscillations during tACS. Here, we attenuated stimulation artifacts to provide evidence for phase-dependent enhancement and suppression of visually evoked steady state responses (SSR) during amplitude-modulated tACS (AM-tACS). We found that AM-tACS enhanced and suppressed SSR by 5.77 ± 2.95%, while it enhanced and suppressed corresponding visual perception by 7.99 ± 5.15%. While not designed to investigate the underlying mechanisms of this effect, our study suggests feasibility and superiority of phase-locked (closed-loop) AM-tACS over conventional (open-loop) AM-tACS to purposefully enhance or suppress brain oscillations at specific frequencies.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Brain/physiology , Visual Perception/physiology , Artifacts
2.
Front Hum Neurosci ; 15: 702768, 2021.
Article in English | MEDLINE | ID: mdl-34456697

ABSTRACT

Language comprehension relies on integrating words into progressively more complex structures, like phrases and sentences. This hierarchical structure-building is reflected in rhythmic neural activity across multiple timescales in E/MEG in healthy, awake participants. However, recent studies have shown evidence for this "cortical tracking" of higher-level linguistic structures also in a proportion of unresponsive patients. What does this tell us about these patients' residual levels of cognition and consciousness? Must the listener direct their attention toward higher level speech structures to exhibit cortical tracking, and would selective attention across levels of the hierarchy influence the expression of these rhythms? We investigated these questions in an EEG study of 72 healthy human volunteers listening to streams of monosyllabic isochronous English words that were either unrelated (scrambled condition) or composed of four-word-sequences building meaningful sentences (sentential condition). Importantly, there were no physical cues between four-word-sentences. Rather, boundaries were marked by syntactic structure and thematic role assignment. Participants were divided into three attention groups: from passive listening (passive group) to attending to individual words (word group) or sentences (sentence group). The passive and word groups were initially naïve to the sentential stimulus structure, while the sentence group was not. We found significant tracking at word- and sentence rate across all three groups, with sentence tracking linked to left middle temporal gyrus and right superior temporal gyrus. Goal-directed attention to words did not enhance word-rate-tracking, suggesting that word tracking here reflects largely automatic mechanisms, as was shown for tracking at the syllable-rate before. Importantly, goal-directed attention to sentences relative to words significantly increased sentence-rate-tracking over left inferior frontal gyrus. This attentional modulation of rhythmic EEG activity at the sentential rate highlights the role of attention in integrating individual words into complex linguistic structures. Nevertheless, given the presence of high-level cortical tracking under conditions of lower attentional effort, our findings underline the suitability of the paradigm in its clinical application in patients after brain injury. The neural dissociation between passive tracking of sentences and directed attention to sentences provides a potential means to further characterise the cognitive state of each unresponsive patient.

3.
Brain Commun ; 3(2): fcab017, 2021.
Article in English | MEDLINE | ID: mdl-33855295

ABSTRACT

Accurate early prognostication is vital for appropriate long-term care decisions after traumatic brain injury. While measures of resting-state EEG oscillations and their network properties, derived from graph theory, have been shown to provide clinically useful information regarding diagnosis and recovery in patients with chronic disorders of consciousness, little is known about the value of these network measures when calculated from a standard clinical low-density EEG in the acute phase post-injury. To investigate this link, we first validated a set of measures of oscillatory network features between high-density and low-density resting-state EEG in healthy individuals, thus ensuring accurate estimation of underlying cortical function in clinical recordings from patients. Next, we investigated the relationship between these features and the clinical picture and outcome of a group of 18 patients in acute post-traumatic unresponsive states who were not following commands 2 days+ after sedation hold. While the complexity of the alpha network, as indexed by the standard deviation of the participation coefficients, was significantly related to the patients' clinical picture at the time of EEG, no network features were significantly related to outcome at 3 or 6 months post-injury. Rather, mean relative alpha power across all electrodes improved the accuracy of outcome prediction at 3 months relative to clinical features alone. These results highlight the link between the alpha rhythm and clinical signs of consciousness and suggest the potential for simple measures of resting-state EEG band power to provide a coarse snapshot of brain health for stratification of patients for rehabilitation, therapy and assessments of both covert and overt cognition.

4.
Ann Neurol ; 89(4): 646-656, 2021 04.
Article in English | MEDLINE | ID: mdl-33368496

ABSTRACT

OBJECTIVE: Patients with traumatic brain injury who fail to obey commands after sedation-washout pose one of the most significant challenges for neurological prognostication. Reducing prognostic uncertainty will lead to more appropriate care decisions and ensure provision of limited rehabilitation resources to those most likely to benefit. Bedside markers of covert residual cognition, including speech comprehension, may reduce this uncertainty. METHODS: We recruited 28 patients with acute traumatic brain injury who were 2 to 7 days sedation-free and failed to obey commands. Patients heard streams of isochronous monosyllabic words that built meaningful phrases and sentences while their brain activity via electroencephalography (EEG) was recorded. In healthy individuals, EEG activity only synchronizes with the rhythm of phrases and sentences when listeners consciously comprehend the speech. This approach therefore provides a measure of residual speech comprehension in unresponsive patients. RESULTS: Seventeen and 16 patients were available for assessment with the Glasgow Outcome Scale Extended (GOSE) at 3 months and 6 months, respectively. Outcome significantly correlated with the strength of patients' acute cortical tracking of phrases and sentences (r > 0.6, p < 0.007), quantified by inter-trial phase coherence. Linear regressions revealed that the strength of this comprehension response (beta = 0.603, p = 0.006) significantly improved the accuracy of prognoses relative to clinical characteristics alone (eg, Glasgow Coma Scale [GCS], computed tomography [CT] grade). INTERPRETATION: A simple, passive, auditory EEG protocol improves prognostic accuracy in a critical period of clinical decision making. Unlike other approaches to probing covert cognition for prognostication, this approach is entirely passive and therefore less susceptible to cognitive deficits, increasing the number of patients who may benefit. ANN NEUROL 2021;89:646-656.


Subject(s)
Brain Death/diagnosis , Comprehension , Speech , Adult , Aged , Aged, 80 and over , Brain Death/diagnostic imaging , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/psychology , Cerebral Cortex/physiopathology , Electroencephalography , Female , Glasgow Outcome Scale , Humans , Linear Models , Male , Middle Aged , Predictive Value of Tests , Prognosis , Tomography, X-Ray Computed
5.
Neurosci Conscious ; 2020(1): niaa022, 2020.
Article in English | MEDLINE | ID: mdl-33133640

ABSTRACT

Comprehension of degraded speech requires higher-order expectations informed by prior knowledge. Accurate top-down expectations of incoming degraded speech cause a subjective semantic 'pop-out' or conscious breakthrough experience. Indeed, the same stimulus can be perceived as meaningless when no expectations are made in advance. We investigated the event-related potential (ERP) correlates of these top-down expectations, their error signals and the subjective pop-out experience in healthy participants. We manipulated expectations in a word-pair priming degraded (noise-vocoded) speech task and investigated the role of top-down expectation with a between-groups attention manipulation. Consistent with the role of expectations in comprehension, repetition priming significantly enhanced perceptual intelligibility of the noise-vocoded degraded targets for attentive participants. An early ERP was larger for mismatched (i.e. unexpected) targets than matched targets, indicative of an initial error signal not reliant on top-down expectations. Subsequently, a P3a-like ERP was larger to matched targets than mismatched targets only for attending participants-i.e. a pop-out effect-while a later ERP was larger for mismatched targets and did not significantly interact with attention. Rather than relying on complex post hoc interactions between prediction error and precision to explain this apredictive pattern, we consider our data to be consistent with prediction error minimization accounts for early stages of processing followed by Global Neuronal Workspace-like breakthrough and processing in service of task goals.

6.
eNeuro ; 7(5)2020.
Article in English | MEDLINE | ID: mdl-33023884

ABSTRACT

Perception is facilitated by a hierarchy of expectations generated from context and prior knowledge. In auditory processing, violations of local (within-trial) expectations elicit a mismatch negativity (MMN), while violations of global (across-trial) expectations elicit a later positive component (P300). This result is taken as evidence of prediction errors ascending through the expectation hierarchy. However, in language comprehension, there is no evidence that violations of semantic expectations across local-global levels similarly elicit a sequence of hierarchical error signals, thus drawing into question the putative link between event-related potentials (ERPs) and prediction errors. We investigated the neural basis of such hierarchical expectations of semantics in a word-pair priming paradigm. By manipulating the overall proportion of related or unrelated word-pairs across the task, we created two global contexts that differentially encouraged strategic use of primes. Across two experiments, we replicated behavioral evidence of greater priming in the high validity context, reflecting strategic expectations of upcoming targets based on "global" context. In our preregistered EEG analyses, we observed a "local" prediction error ERP effect (i.e., semantic priming) ∼250 ms post-target, which, in exploratory analyses, was followed 100 ms later by a signal that interacted with the global context. However, the later effect behaved in an apredictive manner, i.e., was most extreme for fulfilled expectations, rather than violations. Our results are consistent with interpretations of early ERPs as reflections of prediction error and later ERPs as processes related to conscious access and in support of task demands.


Subject(s)
Motivation , Semantics , Auditory Perception , Electroencephalography , Evoked Potentials
7.
Sci Rep ; 9(1): 11482, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391537

ABSTRACT

The notion of semantic embodiment posits that concepts are represented in the same neural sensorimotor systems that were involved in their acquisition. However, evidence in support of embodied semantics - in particular the hypothesised contribution of motor and premotor cortex to the representation of action concepts - is varied. Here, we tested the hypothesis that, consistent with semantic embodiment, sensorimotor cortices will rapidly become active while healthy participants access the meaning of visually-presented motor and non-motor action verbs. Event-related potentials revealed early differential processing of motor and non-motor verbs (164-203 ms) within distinct regions of cortex likely reflecting rapid cortical activation of differentially distributed semantic representations. However, we found no evidence for a specific role of sensorimotor cortices in supporting these representations. Moreover, we observed a later modulation of the alpha band (8-12 Hz) from 555-785 ms over central electrodes, with estimated generators within the left superior parietal lobule, which may reflect post-lexical activation of the object-directed features of the motor action concepts. In conclusion, we find no evidence for a specific role of sensorimotor cortices when healthy participants judge the meaning of visually-presented action verbs. However, the relative contribution of sensorimotor cortices to action comprehension may vary as a function of task goals.


Subject(s)
Alpha Rhythm/physiology , Comprehension/physiology , Motor Cortex/physiology , Parietal Lobe/physiology , Semantics , Adolescent , Adult , Brain Mapping , Evoked Potentials/physiology , Healthy Volunteers , Humans , Motor Cortex/diagnostic imaging , Parietal Lobe/diagnostic imaging , Young Adult
8.
J Neurosci ; 39(36): 7183-7194, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31341028

ABSTRACT

Directing attention helps to extract relevant information and suppress distracters. Alpha brain oscillations (8-12 Hz) are crucial for this process, with power decreases facilitating processing of important information and power increases inhibiting brain regions processing irrelevant information. Evidence for this phenomenon arises from visual attention studies (Worden et al., 2000); however, the effect also exists in other modalities, including the somatosensory system (Haegens et al., 2011) and intersensory attention tasks (Foxe and Snyder, 2011). We investigated in human participants (10 females, 10 males) the role of alpha oscillations in focused (0/100%) versus divided (40/60%) attention, both across modalities (visual/somatosensory; Experiment 1) and within the same modality (visual domain: across hemifields; Experiment 2) while recording EEG over 128 scalp electrodes. In Experiment 1, participants divided their attention between visual and somatosensory modality to determine the temporal/spatial frequency of a target stimulus (vibrotactile stimulus/Gabor grating). In Experiment 2, participants divided attention between two visual hemifields to identify the orientation of a Gabor grating. In both experiments, prestimulus alpha power in visual areas decreased linearly with increasing attention to visual stimuli. In contrast, prestimulus alpha power in parietal areas was lower when attention was divided between modalities/hemifields compared with focused attention. These results suggest there are two alpha sources, one of which reflects the "visual spotlight of attention" and the other reflects attentional effort. To our knowledge, this is the first study to show that attention recruits two spatially distinct alpha sources in occipital and parietal brain regions, acting simultaneously but serving different functions in attention.SIGNIFICANCE STATEMENT Attention to one spatial location/sensory modality leads to power changes of alpha oscillations (∼10 Hz) with decreased power over regions processing relevant information and power increases to actively inhibit areas processing "to-be-ignored" information. Here, we used detailed source modeling to investigate EEG data recorded during separate unimodal (visual) and multimodal (visual and somatosensory) attention tasks. Participants either focused their attention on one modality/spatial location or directed it to both. We show for the first time two distinct alpha sources are active simultaneously but play different roles. A sensory (visual) alpha source was linearly modulated by attention representing the "visual spotlight of attention." By contrast, a parietal alpha source was modulated by attentional effort, showing lowest alpha power when attention was divided.


Subject(s)
Alpha Rhythm , Attention , Somatosensory Cortex/physiology , Visual Cortex/physiology , Adult , Female , Humans , Male , Touch Perception , Visual Perception
9.
Hum Brain Mapp ; 40(4): 1298-1316, 2019 03.
Article in English | MEDLINE | ID: mdl-30430706

ABSTRACT

Functional MRI at ultra-high field (UHF, ≥7 T) provides significant increases in BOLD contrast-to-noise ratio (CNR) compared with conventional field strength (3 T), and has been exploited for reduced field-of-view, high spatial resolution mapping of primary sensory areas. Applying these high spatial resolution methods to investigate whole brain functional responses to higher-order cognitive tasks leads to a number of challenges, in particular how to perform robust group-level statistical analyses. This study addresses these challenges using an inter-sensory cognitive task which modulates top-down attention at graded levels between the visual and somatosensory domains. At the individual level, highly focal functional activation to the task and task difficulty (modulated by attention levels) were detectable due to the high CNR at UHF. However, to assess group level effects, both anatomical and functional variability must be considered during analysis. We demonstrate the importance of surface over volume normalisation and the requirement of no spatial smoothing when assessing highly focal activity. Using novel group analysis on anatomically parcellated brain regions, we show that in higher cognitive areas (parietal and dorsal-lateral-prefrontal cortex) fMRI responses to graded attention levels were modulated quadratically, whilst in visual cortex and VIP, responses were modulated linearly. These group fMRI responses were not seen clearly using conventional second-level GLM analyses, illustrating the limitations of a conventional approach when investigating such focal responses in higher cognitive regions which are more anatomically variable. The approaches demonstrated here complement other advanced analysis methods such as multivariate pattern analysis, allowing UHF to be fully exploited in cognitive neuroscience.


Subject(s)
Attention/physiology , Brain Mapping/methods , Brain/physiology , Cognition/physiology , Magnetic Resonance Imaging/methods , Adult , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Pattern Recognition, Automated/methods , Young Adult
10.
Brain ; 141(11): 3095-3097, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30364982
11.
Brain Stimul ; 10(5): 910-918, 2017.
Article in English | MEDLINE | ID: mdl-28528736

ABSTRACT

BACKGROUND: Transcranial alternating current stimulation (tACS) is widely used to entrain or modulate brain oscillations in order to investigate causal relationships between oscillations and cognition. OBJECTIVE: In a series of experiments we here addressed the question of whether event-related, transient tACS in the beta frequency range can be used to entrain beta oscillations in two different domains: episodic memory formation and motor cortex excitability. METHODS: In experiments 1 and 2, 72 healthy human participants engaged in an incidental encoding task of verbal and non-verbal material while receiving tACS to the left and right inferior frontal gyrus (IFG) at 6.8 Hz, 10.7 Hz, 18.5 Hz, 30 Hz, 48 Hz and sham stimulation for 2s during stimulus presentation. In experiment 3, tACS was administered for 10s to M1 at the individual motor beta frequency of eight subjects. We investigated the relationship between the size of TMS induced MEPs and tACS phase. RESULTS: Beta tACS did not affect memory performance compared to sham stimulation in experiments 1 and 2. Likewise, in experiment 3, MEP size was not modulated by the tACS phase. CONCLUSIONS: Our findings suggest that event-related, transient tACS in the beta frequency range cannot be used to modulate the formation of episodic memories or motor cortex excitability. These null-results question the effectiveness of event-related tACS to entrain beta oscillations and modulate cognition.


Subject(s)
Beta Rhythm/physiology , Memory, Episodic , Motor Cortex/physiology , Photic Stimulation/methods , Transcranial Direct Current Stimulation/methods , Adolescent , Female , Humans , Male , Random Allocation , Treatment Outcome , Young Adult
12.
Sci Rep ; 6: 25132, 2016 04 29.
Article in English | MEDLINE | ID: mdl-27126642

ABSTRACT

Ongoing brain oscillations (7-10 Hz) modulate visual perception; in particular, their precise phase can predict target perception. Here, we employ this phase-dependence of perception in a psychophysical experiment to track spatial properties of entrained oscillations of visual perception across the visual field. Is this entrainment local, or a more global phenomenon? If the latter, does oscillatory phase synchronize over space, or vary with increasing distance from the oscillatory source? We presented a disc stimulus in the upper left quadrant, oscillating in luminance at different frequencies (individual alpha frequency (IAF), 5 Hz, and 15 Hz) to entrain an oscillation with specific frequency and spatial origin. Observers fixated centrally, while flash stimuli at perceptual threshold appeared at different positions and times with respect to the oscillating stimulus. IAF and 5 Hz luminance oscillations modulated detection performance at all tested positions, whereas at 15 Hz, the effect was weaker and less consistent. Furthermore, for IAF and 5 Hz entrainment, preferred phases for target detection differed significantly between spatial locations, suggesting "local" entrainment of detection performance next to the oscillatory source, whereas more distant target locations shared a "global" effect with a significantly different phase. This unexpected global component of entrainment is tentatively attributed to widespread connectivity from thalamic nuclei such as the pulvinar.


Subject(s)
Brain Waves , Visual Perception , Adult , Electroencephalography , Humans , Male , Photic Stimulation/methods , Young Adult
14.
J Neurosci ; 33(33): 13498-504, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23946408

ABSTRACT

α oscillations (8-14 Hz) greatly influence brain activity, yet we generally do not experience them consciously: the world does not appear to oscillate. Dedicated strategies must exist in the brain to prevent these oscillations from disrupting normal processing. Could suitable stimuli fool these strategies and lead to the conscious experience of our own brain oscillations? We describe and explore a novel illusion in which the center of a static wheel stimulus (with 30-40 spokes) is experienced as flickering when viewed in the visual periphery. The key feature of this illusion is that the stimulus fluctuations are experienced as a regular and consistent flicker, which our human observers estimated at ~9 Hz during a psychophysical matching task. Correspondingly, the occipital α rhythm of the EEG was the only oscillation that showed a time course compatible with the reported illusion: when α amplitude was strong, the probability of reporting illusory flicker increased. The peak oscillatory frequency for these flicker-induced modulations was significantly correlated, on a subject-by-subject basis, with the individual α frequency measured during rest, in the absence of visual stimulation. Finally, although the effect is strongest during eye movements, we showed that stimulus motion relative to the retina is not necessary to perceive the illusion: the flicker can also be perceived on the afterimage of the wheel, yet by definition this afterimage is stationary on the retina. We conclude that this new flickering illusion is a unique way to experience the α rhythms that constantly occur in the brain but normally remain unnoticed.


Subject(s)
Brain/physiology , Optical Illusions/physiology , Visual Perception/physiology , Adult , Electroencephalography , Female , Humans , Male , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...