Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Phys Rev Lett ; 102(2): 025002, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19257282

ABSTRACT

Recently achieved high intensities of short laser pulses open new prospects in their application to hole boring in inhomogeneous overdense plasmas and for ignition in precompressed DT fusion targets. A simple analytical model and numerical simulations demonstrate that pulses with intensities exceeding 10;{22} W/cm;{2} may penetrate deeply into the plasma as a result of efficient ponderomotive acceleration of ions in the forward direction. The penetration depth as big as hundreds of microns depends on the laser fluence, which has to exceed a few tens of GJ/cm;{2}. The fast ions, accelerated at the bottom of the channel with an efficiency of more than 20%, show a high directionality and may heat the precompressed target core to fusion conditions.

2.
Phys Rev Lett ; 92(6): 063902, 2004 Feb 13.
Article in English | MEDLINE | ID: mdl-14995239

ABSTRACT

Lasers that provide an energy encompassed in a focal volume of a few cubic wavelengths (lambda(3)) can create relativistic intensity with maximal gradients, using minimal energy. With particle-in-cell simulations we found, that single 200 attosecond pulses could be produced efficiently in a lambda(3) laser pulse reflection, via deflection and compression from the relativistic plasma mirror created by the pulse itself. An analytical model of coherent radiation from a charged layer confirms the pulse compression and is in good agreement with simulations. The novel technique is efficient (approximately 10%) and can produce single attosecond pulses from the millijoule to the joule level.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(1 Pt 2): 016405, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12636609

ABSTRACT

A strong effect of high harmonic radiation during the propagation of a high intensity short laser pulse in a thin wall hollow channel ("fiber") is found and studied via relativistic particle-in-cell simulations. The fiber has finite width walls comprised of an overdense plasma. Only the harmonic radiation with the harmonic number above critical value, for which the fiber walls are transparent, propagates outwards in the form of a coherent ultrashort pulse with very short wavelength.

SELECTION OF CITATIONS
SEARCH DETAIL
...