Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biomed Rep ; 9(2): 99-111, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30013775

ABSTRACT

The radiation-induced bystander effect (RIBE) refers to the manifestation of responses by non-targeted/non-hit cells or tissues situated in proximity to cells and tissues directly exposed to ionizing radiation (IR). The RIBE is elicited by agents and factors released by IR-hit cells. The growing body of data suggests that the underlying mechanisms of the RIBE are multifaceted depending both on the biological (characteristics of directly IR-exposed cells, bystander cells, intercellular milieu) and the physical (dose, rate and type of IR, time after exposure) factors/parameters. Although the exact identity of bystander signal(s) is yet to be identified, the published data indicate changes in gene expression for multiple types of RNA (mRNA, microRNA, mitochondrial RNA, long non-coding RNA, small nucleolar RNA) as being one of the major responses of cells and tissues in the context of the RIBE. Gene expression profiles demonstrate a high degree of variability between distinct bystander cell and tissue types. These alterations could independently, or in a signaling cascade, result in the manifestation of readily observable endpoints, including changes in viability and genomic instability. Here, the relevant publications on the gene candidates and signaling pathways involved in the RIBE are reviewed, and a framework for future studies, both in vitro and in vivo, on the genetic aspect of the RIBE is provided.

2.
Int J Mol Sci ; 16(7): 14737-48, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26133243

ABSTRACT

The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood, generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures, especially genotoxic stresses. However, the risks stemming from exposure to LDIR, particularly within the clinical diagnostic relevant dose range, have not been directly evaluated in human embryonic stem cells (hESCs). Here, we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and, as a reference, high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-, time-, and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs, suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses.


Subject(s)
Embryonic Stem Cells/radiation effects , Radiation, Ionizing , Transcriptome/radiation effects , Cell Line , Dose-Response Relationship, Radiation , Embryonic Stem Cells/metabolism , Genome, Human , Humans
3.
Int J Mol Sci ; 17(1)2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26729107

ABSTRACT

Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD) rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR) compared to those observed after a short-term high-dose IR exposure (HDIR). With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes.


Subject(s)
Gene Expression Regulation/radiation effects , Blood Cells/metabolism , Blood Cells/radiation effects , Dose-Response Relationship, Radiation , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/radiation effects , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/radiation effects , Oligonucleotide Array Sequence Analysis , Radiation, Ionizing , Skin/cytology , Skin/metabolism , Skin/radiation effects
4.
World J Stem Cells ; 6(5): 598-605, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25426256

ABSTRACT

Human pluripotent stem cells (hPSCs) represent heterogeneous populations, including induced pluripotent stem cells (iPSCs), endogenous plastic somatic cells, and embryonic stem cells (ESCs). Human ESCs are derived from the inner cell mass of the blastocyst, and they are characterized by the abilities to self-renew indefinitely, and to give rise to all cell types of embryonic lineage (pluripotency) under the guidance of the appropriate chemical, mechanical and environmental cues. The combination of these critical features is unique to hESCs, and set them apart from other human cells. The expectations are high to utilize hESCs for treating injuries and degenerative diseases; for modeling of complex illnesses and development; for screening and testing of pharmacological products; and for examining toxicity, mutagenicity, teratogenicity, and potential carcinogenic effects of a variety of environmental factors, including ionizing radiation (IR). Exposures to genotoxic stresses, such as background IR, are unavoidable; moreover, IR is widely used in diagnostic and therapeutic procedures in medicine on a routine basis. One of the key outcomes of cell exposures to IR is the change in gene expression, which may underlie the ultimate hESCs fate after such a stress. However, gaps in our knowledge about basic biology of hESCs impose a serious limitation to fully realize the potential of hESCs in practice. The purpose of this review is to examine the available evidence of alterations in gene expression in human pluripotent stem cells after genotoxic stress, and to discuss strategies for future research in this important area.

5.
Int J Mol Sci ; 15(1): 588-604, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24398983

ABSTRACT

There is a great deal of uncertainty on how low (≤ 0.1 Gy) doses of ionizing radiation (IR) affect human cells, partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests' radiation, natural background radiation, and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types, we established a novel, human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and, as a reference, relatively high dose of 1 Gy of IR. Here, we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes, including CDKN1A, GADD45A, etc. at 2 and 16 h post-IR, representing "early" and "late" radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures.


Subject(s)
Embryonic Stem Cells/radiation effects , Radiation, Ionizing , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Dose-Response Relationship, Radiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression/radiation effects , Humans , Immunohistochemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
6.
Int J Mol Sci ; 14(8): 15695-723, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23899786

ABSTRACT

Human stem cells (hSC) possess several distinct characteristics that set them apart from other cell types. First, hSC are self-renewing, capable of undergoing both asymmetric and symmetric cell divisions. Second, these cells can be coaxed to differentiate into various specialized cell types and, as such, hold great promise for regenerative medicine. Recent progresses in hSC biology fostered the characterization of the responses of hSC to genotoxic stresses, including ionizing radiation (IR). Here, we examine how different types of hSC respond to IR, with a special emphasis on their radiosensitivity, cell cycle, signaling networks, DNA damage response (DDR) and DNA repair. We show that human embryonic stem cells (hESCs) possess unique characteristics in how they react to IR that clearly distinguish these cells from all adult hSC studied thus far. On the other hand, a manifestation of radiation injuries/toxicity in human bodies may depend to a large extent on hSC populating corresponding tissues, such as human mesenchymal stem cells (hMSC), human hematopoietic stem cells (hHSC), neural hSC, intestine hSC, etc. We discuss here that hSC responses to IR differ notably across many types of hSC which may represent the distinct roles these cells play in development, regeneration and/or maintenance of homeostasis.


Subject(s)
Radiation, Ionizing , Stem Cells/radiation effects , Cell Cycle Checkpoints/drug effects , DNA Damage/radiation effects , DNA Repair/radiation effects , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/radiation effects , Epigenomics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/radiation effects , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/radiation effects , Stem Cells/cytology , Stem Cells/metabolism
7.
Stem Cells Int ; 2012: 579104, 2012.
Article in English | MEDLINE | ID: mdl-22966236

ABSTRACT

Human embryonic stem cells, which are derived from the inner cell mass of the blastocyst, have become an object of intense study over the last decade. They possess two unique properties that distinguish them from many other cell types: (i) the ability to self-renew indefinitely in culture under permissive conditions, and (ii) the pluripotency, defined as the capability of giving rise to all cell types of embryonic lineage under the guidance of the appropriate developmental cues. The focus of many recent efforts has been on the elucidating the signaling pathways and molecular networks operating in human embryonic stem cells. These cells hold great promise in cell-based regenerative therapies, disease modeling, drug screening and testing, assessing genotoxic and mutagenic risks associated with exposures to a variety of environmental factors, and so forth. Ionizing radiation is ubiquitous in nature, and it is widely used in diagnostic and therapeutic procedures in medicine. In this paper, our goal is to summarize the recent progress in understanding how human embryonic stem cells respond to ionizing radiation exposures, using novel methodologies based on "omics" approaches, and to provide a critical discussion of what remains unknown; thus proposing a roadmap for the future research in this area.

8.
Genomics ; 100(5): 277-81, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22814268

ABSTRACT

The indirect biological effects of ionizing radiation (IR) are thought to be mediated largely by reactive oxygen and nitrogen species (ROS and RNS). However, no data are available on how nitric oxide (NO) modulates the response of normal human cells to IR exposures at the level of the whole transcriptome. Here, we examined the effects of NO and ROS scavengers, carboxy-PTIO and DMSO, on changes in global gene expression in cultured normal human fibroblasts after exposures to gamma-rays, aiming to elucidate the involvement of ROS and RNS in transcriptional response to IR. We found that NO depletion dramatically affects the gene expression in normal human cells following irradiation with gamma-rays. We observed striking (more than seven-fold) reduction of the number of upregulated genes upon NO scavenging compared to reference irradiated cell cultures. NO scavenging in irradiated IMR-90 cells results in induction of p53 signaling, DNA damage and DNA repair pathways.


Subject(s)
Free Radical Scavengers/metabolism , Gamma Rays , Gene Expression Profiling/methods , Gene Expression Regulation/radiation effects , Genome, Human/genetics , Nitric Oxide/metabolism , Transcription, Genetic/radiation effects , Benzoates , Cell Line , Dimethyl Sulfoxide , Fibroblasts , Humans , Imidazoles , Oligonucleotide Array Sequence Analysis , Transcription, Genetic/physiology
9.
PLoS One ; 7(2): e31028, 2012.
Article in English | MEDLINE | ID: mdl-22347422

ABSTRACT

MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers cellular stress response. However, the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not been defined yet. Here, by using system biology approaches, we show for the first time, that miRNAome undergoes global alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes), and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-, cell cycle-, ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response, and identify novel molecular targets of radiation in hESC.


Subject(s)
Embryonic Stem Cells/radiation effects , MicroRNAs/physiology , Radiation, Ionizing , Cell Cycle/genetics , Cell Differentiation/genetics , Dose-Response Relationship, Radiation , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Humans , Ion Transport/genetics , Kinetics
10.
Mutat Res ; 709-710: 40-8, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21376742

ABSTRACT

One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1Gy of gamma-radiation at 2h and 16h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.


Subject(s)
Embryonic Stem Cells/radiation effects , Gene Expression Profiling , Cell Cycle/radiation effects , Cell Line , Cell Proliferation/radiation effects , Cell Survival/radiation effects , DNA Damage/radiation effects , Genes, p53 , Humans , Polymerase Chain Reaction , Signal Transduction
11.
PLoS One ; 5(12): e14195, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-21152027

ABSTRACT

BACKGROUND: The radiation-induced "bystander effect" (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed. METHODOLOGY/PRINCIPAL FINDINGS: Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05). CONCLUSIONS/SIGNIFICANCE: These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.


Subject(s)
Bystander Effect/radiation effects , Mesenchymal Stem Cells/radiation effects , Stem Cells/radiation effects , Apoptosis , Cellular Senescence , Coculture Techniques , Culture Media, Conditioned/pharmacology , DNA Damage , Embryonic Stem Cells/cytology , Fibroblasts/cytology , Humans , Immunohistochemistry/methods , Microscopy, Fluorescence/methods , Regeneration , Signal Transduction
12.
Gene ; 455(1-2): 8-15, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20123005

ABSTRACT

Human embryonic stem cells (hESC) are capable to give rise to all cell types in the human body during the normal course of development. Therefore, these cells hold a great promise in regenerative cell replacement based therapeutical approaches. However, some controversy exists in literature concerning the ultimate fate of hESC after exposure to genotoxic agents, in particular, regarding the effect of DNA damaging insults on pluripotency of hESC. To comprehensively address this issue, we performed an analysis of the expression of marker genes, associated with pluripotent state of hESC, such as Oct-4, Nanog, Sox-2, SSEA-4, TERT, TRA-1-60 and TRA-1-81 up to 65h after exposure to ionizing radiation (IR) using flow cytometry, immunocytochemistry and quantitative real-time polymerase chain reaction techniques. We show that irradiation with relatively low doses of gamma-radiation (0.2Gy and 1Gy) does not lead to loss of expression of the pluripotency-associated markers in the surviving hESC. While changes in the levels of expression of some of the pluripotency markers were observed at different time points after IR exposure, these alterations were not persistent, and, in most cases, the expression of the pluripotency-associated markers remained significantly higher than that observed in fully differentiated human fibroblasts, and in hESCs differentiated into definitive endodermal lineage. Our data suggest that exposure of hESC to relatively low doses of IR as a model genotoxic agent does not significantly affect pluripotency of the surviving fraction of hESC.


Subject(s)
Embryo, Mammalian/cytology , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/radiation effects , Biomarkers/metabolism , Cell Count , Cell Differentiation , Cell Survival , Cells, Cultured , Embryonic Stem Cells/radiation effects , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Flow Cytometry , Humans , Radiation, Ionizing , Reverse Transcriptase Polymerase Chain Reaction , Stage-Specific Embryonic Antigens/genetics
13.
Carcinogenesis ; 30(10): 1686-95, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19651821

ABSTRACT

When cells are exposed to ionizing radiation (IR), unexposed cells that share media with damaged cells exhibit similar effects to irradiated cells including increased levels of DNA double-strand breaks (DSBs). Hypothesizing that this effect, known as the radiation-induced bystander effect, may be a specific instance of communication between damaged and undamaged cells regardless of damage source, we demonstrated that exposure of target cells to non-IR induces bystander damage in non-targeted cells as measured by gamma-H2AX and 53BP1 focal formation. Initially, bystander damage was found primarily in S-phase cells, but at later times, non-S-phase cells were also affected. In addition, media from undamaged malignant and senescent cells also was found to induce DSBs in primary cultures. Media conditioned on cells targeted with either ionizing or non-IR as well as on undamaged malignant and senescent cells contained elevated levels of several cytokines. One of these, transforming growth factor beta (TGF-beta), and nitric oxide (NO) were found to elevate numbers of gamma-H2AX/53BP1 foci in normal cell cultures similar to levels found in bystander cells, and this elevation was abrogated by NO synthase inhibitors, TGF-beta blocking antibody and antioxidants. These findings support the hypothesis that damage in bystander cells results from their exposure to cytokines or reactive compounds released from stressed cells, regardless of damage source. These results have implications for oncogenesis in that they indicate that damaged normal cells or undamaged tumor cells may induce genomic instability, leading to an increased risk of oncogenic transformation in other cells with which they share media or contact directly.


Subject(s)
Cell Communication/physiology , Histones/genetics , Breast/cytology , Breast/physiology , Cell Division/radiation effects , Cell Transformation, Neoplastic , DNA, Neoplasm/genetics , Enzyme Inhibitors/pharmacology , Female , Fibroblasts/cytology , Fibroblasts/physiology , HeLa Cells/cytology , HeLa Cells/physiology , HeLa Cells/radiation effects , Histones/metabolism , Humans , Nitric Oxide/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , S Phase , Stress, Physiological/physiology , Transforming Growth Factor beta/pharmacology , Ultraviolet Rays , Uterine Cervical Neoplasms/genetics
14.
Cell Cycle ; 6(18): 2210-2, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17881892

ABSTRACT

The recent years have witnessed a rapid accumulation of experimental data showing that ionizing radiation elicits a plethora of biological effects in unirradiated cells receiving bystander signals from hit cells. This so-called radiation-induced bystander effect (RIBE) manifests in various ways including changes in gene expression, genetic and epigenetic alterations, as well as increases in cell transformation and cell death. Our group and others found that DNA double-stranded breaks (DSBs), directly measured by the gamma-H2AX focus formation assay, accumulate in bystander cells in a number of experimental systems such as human cultured cells, human three-dimensional tissue models and in mice. In addition, we recently found that various other sources of cell stress, including media from cancerous cells resulted in a DNA damage response (DDR) in normal human cells that is reminiscent of RIBE. These results suggest that the RIBE may be part of a more general stress response, however, the molecular mechanism underpinning the formation of DNA DSBs in bystander cells is still unclear. This extra view points to some possibilities that might explain why DDR in human cells can be observed under bystander conditions.


Subject(s)
Bystander Effect/physiology , Bystander Effect/radiation effects , Cell Communication/physiology , Cell Communication/radiation effects , Histones/metabolism , Histones/radiation effects , Oxidative Stress/physiology , Radiation, Ionizing , Animals , Histones/physiology , Humans , Oxidative Stress/radiation effects , Signal Transduction/physiology , Signal Transduction/radiation effects
15.
BMC Genomics ; 8: 192, 2007 Jun 26.
Article in English | MEDLINE | ID: mdl-17594496

ABSTRACT

BACKGROUND: This study assesses the whole-genome gene expression changes in a panel of primary human cell lines in response to DNA damage mediated by decay of DNA-incorporated radioiodinated thymidine analog 5-[125I]iodo-2'-deoxyuridine (125I-IUdR). Three normal human cell lines of different origin, namely, gingival fibroblasts AG09319, fetal skin fibroblasts GM05388 and neonatal foreskin epidermal keratinocytes (NHFK) were used in this study. DNA molecules were radiolabeled by incubation of cells in culture in a medium supplemented with either 3.7 kBq/ml or 18.5 kBq/ml of 125I-IUdR for 24 h followed by incubation in IUdR-free medium for additional 24 hours. Each experiment was carried out in quadruplicate. 125I-IUdR uptake was monitored by measuring DNA-associated radioactivity. The whole-genome gene expression changes were evaluated using Agilent Human Whole Genome oligo microarrays containing 44,290 elements representing all known and predicted human genes. DNA microarray dataset was independently partially validated with quantitative real-time PCR (RT-PCR). RESULTS: AG09319 gingival cells in culture responded to 125I-IUdR treatment by changing the expression level of 335 genes in total, whereas under the same conditions GM05388 and NHFK cells differentially expressed 49 genes and 27 genes, respectively. However, for GM05388 cells the number of differentially expressed genes increases with the rise of 125I-IUdR concentrations in cell culture media. The key up-regulated biological processes in a chosen panel of cell lines concern the regulation of protein kinase activities and/or cell death. Genes repressed in response to 125I-IUdR treatment are involved in cytokinesis, M phase of the cell cycle, chromosome architecture and organization, DNA metabolism, DNA packaging, DNA repair and response to DNA damage. Despite the disparate nature of the gene patterns elicited by 125I-induced DNA damage among the different cell lines, the differentially expressed transcripts reveal strikingly non-random chromosomal distribution in all the cell lines we used. CONCLUSION: Our data suggest that DNA-targeted ionizing radiation produced by 125I-IUdR results in changes in expression of only a limited subset of genes in primary human cells. The responsive genes are distributed non-randomly among the chromosomes; and a significant fraction of them is p53-dependent in the transcriptional regulation.


Subject(s)
Gene Expression Profiling , Gene Expression/drug effects , Gene Expression/radiation effects , Genomics/methods , Idoxuridine/chemistry , Radiation, Ionizing , Cell Line , DNA Damage , Gene Expression Regulation , Humans , Models, Biological , Models, Genetic , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism
16.
Oncogene ; 24(49): 7257-65, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16170376

ABSTRACT

That irradiated cells affect their unirradiated 'bystander' neighbors is evidenced by reports of increased clonogenic mortality, genomic instability, and expression of DNA-repair genes in the bystander cell populations. The mechanisms underlying the bystander effect are obscure, but genomic instability suggests DNA double-strand breaks (DSBs) may be involved. Formation of DSBs induces the phosphorylation of the tumor suppressor protein, histone H2AX and this phosphorylated form, named gamma-H2AX, forms foci at DSB sites. Here we report that irradiation of target cells induces gamma-H2AX focus formation in bystander cell populations. The effect is manifested by increases in the fraction of cells in a population that contains multiple gamma-H2AX foci. After 18 h coculture with cells irradiated with 20 alpha-particles, the fraction of bystander cells with multiple foci increased 3.7-fold. Similar changes occurred in bystander populations mixed and grown with cells irradiated with gamma-rays, and in cultures containing media conditioned on gamma-irradiated cells. DNA DSB repair proteins accumulated at gamma-H2AX foci, indicating that they are sites of DNA DSB repair. Lindane, which blocks gap-junctions, prevented the bystander effect in mixing but not in media transfer protocols, while c-PTIO and aminoguanidine, which lower nitric oxide levels, prevented the bystander effect in both protocols. Thus, multiple mechanisms may be involved in transmitting bystander effects. These studies show that H2AX phosphorylation is an early step in the bystander effect and that the DNA DSBs underlying gamma-H2AX focus formation may be responsible for its downstream manifestations.


Subject(s)
Bystander Effect/radiation effects , DNA Damage/radiation effects , DNA/radiation effects , Fibroblasts/radiation effects , Histones/physiology , Coculture Techniques , Cyclic N-Oxides/pharmacology , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Hexachlorocyclohexane/pharmacology , Humans , Imidazoles/pharmacology , Insecticides/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Phosphorylation , Radiation, Ionizing
SELECTION OF CITATIONS
SEARCH DETAIL
...