Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 41: 127983, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33965007

ABSTRACT

We identified and explored the structure-activity relationship (SAR) of a novel heterocyclic chemical series of arenavirus cell entry inhibitors. Optimized lead compounds, including diphenyl-substituted imidazo[1,2-a]pyridines, benzimidazoles, and benzotriazoles exhibited low to sub-nanomolar potency against both pseudotyped and infectious Old and New World arenaviruses, attractive metabolic stability in human and most nonhuman liver microsomes as well as a lack of hERG K + channel or CYP enzyme inhibition. Moreover, the straightforward synthesis of several lead compounds (e.g., the simple high yield 3-step synthesis of imidazo[1,2-a]pyridine 37) could provide a cost-effective broad-spectrum arenavirus therapeutic that may help to minimize the cost-prohibitive burdens associated with treatments for emerging viruses in economically challenged geographical settings.


Subject(s)
Antiviral Agents/pharmacology , Arenavirus/drug effects , Drug Discovery , Heterocyclic Compounds/pharmacology , Viral Envelope Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Arenavirus/metabolism , Dose-Response Relationship, Drug , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Viral Envelope Proteins/metabolism
2.
ACS Med Chem Lett ; 11(6): 1160-1167, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32550996

ABSTRACT

We identified and explored the structure-activity-relationship (SAR) of an adamantane carboxamide chemical series of Ebola virus (EBOV) inhibitors. Selected analogs exhibited half-maximal inhibitory concentrations (EC50 values) of ∼10-15 nM in vesicular stomatitis virus (VSV) pseudotyped EBOV (pEBOV) infectivity assays, low hundred nanomolar EC50 activity against wild type EBOV, aqueous solubility >20 mg/mL, and attractive metabolic stability in human and nonhuman liver microsomes. X-ray cocrystallographic characterizations of a lead compound with the EBOV glycoprotein (GP) established the EBOV GP as a target for direct compound inhibitory activity and further provided relevant structural models that may assist in identifying optimized therapeutic candidates.

3.
Bioorg Med Chem Lett ; 29(22): 126620, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31537423

ABSTRACT

Old World (Africa) and New World (South America) arenaviruses are associated with human hemorrhagic fevers. Efforts to develop small molecule therapeutics have yielded several chemical series including the 4-acyl-1,6-dialkylpiperazin-2-ones. Herein, we describe an extensive exploration of this chemotype. In initial Phase I studies, R1 and R4 scanning libraries were assayed to identify potent substituents against Old World (Lassa) virus. In subsequent Phase II studies, R6 substituents and iterative R1, R4 and R6 substituent combinations were evaluated to obtain compounds with improved Lassa and New World (Machupo, Junin, and Tacaribe) arenavirus inhibitory activity, in vitro human liver microsome metabolic stability and aqueous solubility.


Subject(s)
Antiviral Agents/pharmacology , Arenavirus/drug effects , Piperazines/pharmacology , Viral Envelope Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Arenavirus/metabolism , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Structure-Activity Relationship , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...