Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37833937

ABSTRACT

The European Commission of the International League Against Epilepsy (ILAE) has identified glial mechanisms of seizures and epileptogenesis as top research priorities. The aim of our study was to conduct a comparative analysis of the expression levels of cytoskeletal proteins (glial fibrillar acidic protein (GFAP) and vimentin), protective protein S100, and proapoptotic caspase-3 protein in patients with drug-resistant epilepsy (DRE) associated with focal cortical dysplasia (FCD). We aimed to investigate how the expression levels of these proteins depend on age (both in children and adults), gender, and disease duration, using immunohistochemistry. Nonparametric statistical methods were employed for data analysis. In the epileptic focus area of the cortex and white matter in patients with FCD-associated temporal lobe DRE, a higher level of expression of these proteins was observed. Age and gender differences were found for vimentin and S100. In the early stages of disease development, there was a compensatory sequential increase in the expression of cytoskeletal and protective proteins. In patients with DRE, depending on the disease duration, patterns of development of neurodegeneration were noted, which is accompanied by apoptosis of gliocytes. These results provide insights into epilepsy mechanisms and may contribute to improving diagnostic and treatment approaches.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Focal Cortical Dysplasia , Humans , Adult , Child , Epilepsy, Temporal Lobe/metabolism , Vimentin/genetics , Vimentin/metabolism , Cytoskeletal Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Epilepsy/metabolism , Temporal Lobe/metabolism , Glial Fibrillary Acidic Protein/metabolism , Retrospective Studies
2.
Explor Target Antitumor Ther ; 4(6): 1157-1164, 2023.
Article in English | MEDLINE | ID: mdl-38213542

ABSTRACT

Early clinical trials aimed to halt cancer progression by inhibiting the growth of new blood vessels in tumors through single-agent targeted therapy with bevacizumab. These trials largely proved unsuccessful. However, bevacizumab turned out to be efficient when administered in combination with other anticancer drugs. The efficacy of this approach is explained by the ability of bevacizumab to eliminate immature blood vessels thus normalizing intratumoral blood flow and improving the delivery of cytotoxic or targeted agents. This report describes four cases of heavily pretreated patients with metastatic HER2-positive breast cancer, who had no meaningful treatment options left, and who received single-agent bevacizumab as an empirical last-resort therapy. Three of these patients had severe complaints, and they demonstrated striking symptomatic relief within the first day of this treatment. In addition to the observed "Lazarus response", which was likely attributed to the bevacizumab-driven resolution of edema, some evidence of a direct antitumor effect was observed. These data may call for the reconsideration of bevacizumab monotherapy in patients with HER2-associated breast cancer, and perhaps in some other categories of cancer patients.

3.
Int J Clin Oncol ; 27(5): 850-862, 2022 May.
Article in English | MEDLINE | ID: mdl-35171360

ABSTRACT

PURPOSE: This study aimed to analyze changes in the plasma concentration of EGFR-mutated circulating tumor DNA (ctDNA) occurring immediately after the start of therapy with EGFR tyrosine kinase inhibitors (TKIs). METHODS: Serial plasma samples were collected from 30 patients with EGFR-driven non-small cell lung cancer before intake of the first tablet and at 0.5, 1, 2, 3, 6, 12, 24, 36 and 48 h after the start of the therapy. The content of EGFR alleles (exon 19 deletions or L858R) in ctDNA was measured by ddPCR. RESULTS: ctDNA was detected at base-line in 25/30 (83%) subjects. Twelve (50%) out of 24 informative patients showed > 25% reduction of the ctDNA content at 48 h time point; all these patients demonstrated disease control after 4 and 8-12 weeks of therapy. The remaining 12 individuals showed either stable content of EGFR-mutated ctDNA (n = 5) or the elevation of ctDNA concentration (n = 7). 10 of 12 patients with elevated or stable ctDNA level achieved an objective response at 4 weeks, but only 5 of 10 evaluable patients still demonstrated disease control at 8-12 weeks (p = 0.032, when compared to the group with ctDNA decrease). The decline of the amount of circulating EGFR mutant copies at 48 h also correlated with longer progression-free survival (14.7 months vs. 8.5 months, p = 0.013). CONCLUSION: Comparison of concentration of EGFR-mutated ctDNA at base-line and at 48 h after the start of therapy is predictive for the duration of TKI efficacy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/genetics , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/therapeutic use
4.
Cancer Genet ; 256-257: 165-178, 2021 08.
Article in English | MEDLINE | ID: mdl-34186498

ABSTRACT

PURPOSE: This study aimed to investigate factors, which influence the content of circulating tumor DNA (ctDNA). METHODS: 398 serial plasma samples were collected within 1-7 consecutive days from patients with EGFR-mutated lung cancer (n = 13), RAS/RAF-mutated colorectal cancer (n = 54) and BRAF-mutated melanoma (n = 17), who presented with measurable tumor disease. The amount of ctDNA was determined by ddPCR. RESULTS: Among 82 patients, who donated 2-6 serial plasma samples, 42 subjects were classified as ctDNA-positive; only 22% cases were mutation-positive across all consecutive tests, while 24/82 (29%) patients showed presence of mutated ctDNA in some but not all blood draws. Subjects with progressing tumors had higher probability of being detected ctDNA-positive as compared to patients, who responded to therapy or had stable disease (39/55 (71%) vs. 4/24 (17%); p = 0.0001). Our study failed to reveal the impact of the time of the day, recent meal or prior physical exercise on the results of ctDNA testing. CONCLUSIONS: Presence of ctDNA in plasma is particularly characteristic for patients, who experience clinical progression of tumor disease. Consecutive plasma tests may occasionally provide discordant data; thus, the repetition of analysis may be advised in certain cases in order to ensure the validity of negative ctDNA result.


Subject(s)
Circulating Tumor DNA/blood , Exercise/physiology , Tumor Burden , Aged , Aged, 80 and over , Circulating Tumor DNA/genetics , DNA Mutational Analysis , Female , Humans , Male , Middle Aged , Mutation/genetics , Probability , Reproducibility of Results , Time Factors
5.
Ecotoxicol Environ Saf ; 196: 110519, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32244116

ABSTRACT

On two rat cell lines, pheochromocytoma PC12 and ascites hepatoma AS-30D, and on rat liver mitochondria we studied action of paxilline (lipophilic mycotoxin from fungus Penicillium paxilli which is blocker of large-conductance potassium channels) against harmful effects of Cd(II) - one of the most dangerous toxic metals and environmental pollutants. We investigated an influence of paxilline on cell viability and mitochondrial function in the presence and in the absence of Cd2+. As found, paxilline protected partially from the Cd2+-induced cytotoxicity, namely taken in concentration of 1 µM it decreased the Cd2+-induced cell necrosis in average by 10-14 or 13-23% for AS-30D and PC12 cells, respectively. Nevertheless, paxilline did not affect the Cd2+-induced apoptosis of AS-30D cells. The alleviating concentration of paxilline reduced an intracellular production of reactive oxygen species (ROS) in PC12 cells intoxicated by Cd2+ and enhanced the ROS production in control AS-30D cells; however, it weakly affected mitochondrial membrane potential of the cells in the absence and in the presence of Cd2+. The ameliorative concentration of paxilline decreased the maximal respiration rates of control cells of both types after short-term (3-5 h) treatment with it while the rates reached their control levels after long-term (24-48 h) incubation with the drug. Paxilline was not protective against the Cd2+-induced membrane permeability and respiration rate changes in isolated rat liver mitochondria. As result, the mitochondrial electron transport chain was concluded to contribute in the mitigating effect of paxilline against the Cd2+-produced cell injury.


Subject(s)
Apoptosis/drug effects , Cadmium/toxicity , Environmental Pollutants/toxicity , Indoles/pharmacology , Mitochondria, Liver/drug effects , Potassium Channel Blockers/pharmacology , Animals , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/metabolism , Necrosis , PC12 Cells , Rats , Reactive Oxygen Species/metabolism
6.
Syst Appl Microbiol ; 43(2): 126064, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32044151

ABSTRACT

The ability to grow by anaerobic CO oxidation with production of H2 from water is known for some thermophilic bacteria, most of which belong to Firmicutes, as well as for a few hyperthermophilic Euryarchaeota isolated from deep-sea hydrothermal habitats. A hyperthermophilic, neutrophilic, anaerobic filamentous archaeon strain 1505=VKM B-3180=KCTC 15798 was isolated from a terrestrial hot spring in Kamchatka (Russia) in the presence of 30% CO in the gas phase. Strain 1505 could grow lithotrophically using carbon monoxide as the energy source with the production of hydrogen according to the equation CO+H2O→CO2+H2; mixotrophically on CO plus glucose; and organotrophically on peptone, yeast extract, glucose, sucrose, or Avicel. The genome of strain 1505 was sequenced and assembled into a single chromosome. Based on 16S rRNA gene sequence analysis and in silico genome-genome hybridization, this organism was shown to be closely related to the Thermofilum adornatum species. In the genome of Thermofilum sp. strain 1505, a gene cluster (TCARB_0867-TCARB_0879) was found that included genes of anaerobic (Ni,Fe-containing) carbon monoxide dehydrogenase and genes of energy-converting hydrogenase ([Ni,Fe]-CODH-ECH gene cluster). Compared to the [Ni,Fe]-CODH-ECH gene clusters occurring in the sequenced genomes of other H2-producing carboxydotrophs, the [Ni,Fe]-CODH-ECH gene cluster of Thermofilum sp. strain 1505 presented a novel type of gene organization. The results of the study provided the first evidence of anaerobic CO oxidation coupled with H2 production performed by a crenarchaeon, as well as the first documented case of lithotrophic growth of a Thermofilaceae representative.


Subject(s)
Carbon Monoxide/metabolism , Hydrogen/metabolism , Thermofilaceae/growth & development , Thermofilaceae/metabolism , Aldehyde Oxidoreductases/genetics , Anaerobiosis , Autotrophic Processes , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Hot Springs/chemistry , Hot Springs/microbiology , Hydrogenase/genetics , Multienzyme Complexes/genetics , Multigene Family , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Russia , Sequence Analysis, DNA , Thermofilaceae/classification , Thermofilaceae/genetics
7.
Front Microbiol ; 9: 1759, 2018.
Article in English | MEDLINE | ID: mdl-30123201

ABSTRACT

The genus Carboxydocella forms a deeply branching family in the class Clostridia and is currently represented by three physiologically diverse species of thermophilic prokaryotes. The type strain of the type species, Carboxydocella thermautotrophica 41T, is an obligate chemolithoautotroph growing exclusively by hydrogenogenic CO oxidation. Another strain, isolated from a hot spring at Uzon caldera, Kamchatka in the course of this work, is capable of coupling carboxydotrophy and dissimilatory reduction of Fe(III) from oxic and phyllosilicate minerals. The processes of carboxydotrophy and Fe(III) reduction appeared to be interdependent in this strain. The genomes of both isolates were sequenced, assembled into single chromosome sequences (for strain 41T a plasmid sequence was also assembled) and analyzed. Genome analysis revealed that each of the two strains possessed six genes encoding diverse Ni,Fe-containing CO dehydrogenases (maximum reported in complete prokaryotic genomes), indicating crucial role of carbon monoxide in C. thermautotrophica metabolism. Both strains possessed a set of 30 multiheme c-type cytochromes, but only the newly isolated Fe-reducing strain 019 had one extra gene of a 17-heme cytochrome, which is proposed to represent a novel determinant of dissimilatory iron reduction in prokaryotes. Mössbauer studies revealed that strain 019 induced reductive transformation of the abundant ferric/ferrous-mica mineral glauconite to siderite during carboxydotrophic growth. Reconstruction of the C. thermautotrophica strains energy metabolism is the first comprehensive genome analysis of a representative of the deep phylogenetic branch Clostridia Incertae Sedis, family V. Our data provide insights into energy metabolism of C. thermautotrophica with an emphasis on its ecological implications.

8.
Clin Drug Investig ; 38(6): 553-562, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29470838

ABSTRACT

BACKGROUND: Colorectal carcinomas (CRCs) are sensitive to treatment by anti-epidermal growth factor receptor (EGFR) antibodies only if they do not carry activating mutations in down-stream EGFR targets (KRAS/NRAS/BRAF). Most clinical trials for chemo-naive CRC patients involved combination of targeted agents and chemotherapy, while single-agent cetuximab or panitumumab studies included either heavily pretreated patients or subjects who were not selected on the basis of molecular tests. We hypothesized that anti-EGFR therapy would have significant efficacy in chemo-naive patients with KRAS/NRAS/BRAF mutation-negative CRC. METHODS: Nineteen patients were prospectively included in the study. RESULTS: Two (11%) patients experienced partial response (PR) and 11 (58%) subjects showed stable disease (SD). Median time to progression approached 6.1 months (range 1.6-15.0 months). Cetuximab efficacy did not correlate with RNA expression of EGFR and insulin-like growth factor 2 (IGF2). Only one tumor carried PIK3CA mutation, and this CRC responded to cetuximab. Exome analysis of patients with progressive disease (PD) revealed 1 CRC with high-level microsatellite instability and 1 instance of HER2 oncogene amplification; 3 of 4 remaining patients with PD had allergic reactions to cetuximab, while none of the subjects with PR or SD had this complication. Comparison with 19 retrospective KRAS/NRAS/BRAF mutation-negative patients receiving first-line fluoropyrimidines revealed no advantages or disadvantages of cetuximab therapy. CONCLUSIONS: Cetuximab demonstrates only modest efficacy when given as a first-line monotherapy to KRAS/NRAS/BRAF mutation-negative CRC patients. It is of question, why meticulous patient selection, which was undertaken in the current study, did not result in the improvement of outcomes of single-agent cetuximab treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Cetuximab/administration & dosage , Colorectal Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , ErbB Receptors/genetics , Female , GTP Phosphohydrolases/genetics , Humans , Male , Membrane Proteins/genetics , Middle Aged , Mutation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Retrospective Studies
9.
Front Microbiol ; 7: 552, 2016.
Article in English | MEDLINE | ID: mdl-27199905

ABSTRACT

Enzymes from (hyper)thermophiles "Thermozymes" offer a great potential for biotechnological applications. Thermophilic adaptation does not only provide stability toward high temperature but is also often accompanied by a higher resistance to other harsh physicochemical conditions, which are also frequently employed in industrial processes, such as the presence of, e.g., denaturing agents as well as low or high pH of the medium. In order to find new thermostable, xylan degrading hydrolases with potential for biotechnological application we used an in situ enrichment strategy incubating Hungate tubes with xylan as the energy substrate in a hot vent located in the tidal zone of Kunashir Island (Kuril archipelago). Using this approach a hyperthermophilic euryarchaeon, designated Thermococcus sp. strain 2319x1, growing on xylan as sole energy and carbon source was isolated. The organism grows optimally at 85°C and pH 7.0 on a variety of natural polysaccharides including xylan, carboxymethyl cellulose (CMC), amorphous cellulose (AMC), xyloglucan, and chitin. The protein fraction extracted from the cells surface with Tween 80 exhibited endoxylanase, endoglucanase and xyloglucanase activities. The genome of Thermococcus sp. strain 2319x1 was sequenced and assembled into one circular chromosome. Within the newly sequenced genome, a gene, encoding a novel type of glycosidase (143 kDa) with a unique five-domain structure, was identified. It consists of three glycoside hydrolase (GH) domains and two carbohydrate-binding modules (CBM) with the domain order GH5-12-12-CBM2-2 (N- to C-terminal direction). The full length protein, as well as truncated versions, were heterologously expressed in Escherichia coli and their activity was analyzed. The full length multidomain glycosidase (MDG) was able to hydrolyze various polysaccharides, with the highest activity for barley ß-glucan (ß- 1,3/1,4-glucoside), followed by that for CMC (ß-1,4-glucoside), cellooligosaccharides and galactomannan. The results reported here indicate that the modular MDG structure with multiple glycosidase and carbohydrate-binding domains not only extends the substrate spectrum, but also seems to allow the degradation of partially soluble and insoluble polymers in a processive manner. This report highlights the great potential in a multi-pronged approach consisting of a combined in situ enrichment, (comparative) genomics, and biochemistry strategy for the screening for novel enzymes of biotechnological relevance.

10.
Enzyme Microb Technol ; 86: 117-26, 2016 May.
Article in English | MEDLINE | ID: mdl-26992800

ABSTRACT

The family B DNA polymerase gene from the euryarchaeon Thermococcus barophilus Ch5 (Tba5) contains an open reading frame of 6198 base pairs that encodes 2065 amino acid residues. The gene is split by three inteins that must be spliced out to form the mature DNA polymerase. A Tba5 DNA polymerase gene without inteins (genetically intein-spliced) was expressed under the control of the pET-28b(+)T7lac promoter in E. coli Rosetta 2(DE3)pLysS cells. The molecular mass of the purified Tba5 DNA polymerase was about 90kDa consistent with the 90,470Da molecular mass calculated based on the 776 amino acid sequence. The optimal pH for Tba5 DNA polymerase activity was 7.5 and the optimal temperature was 70-75°C. The enzyme possessed 3'→5' exonuclease activity and was activated by magnesium ions. PCR amplification using Tba5 DNA polymerase enables high-yield for 1- to 6-kb target DNA products, while 8- to 10-kb target DNA products were amplified at low or inefficient levels. To simultaneously improve product yield and amplification fidelity, Tba5 plus DNA polymerase mixtures were constituted with various amounts of Tba5 DNA polymerase mixed with Taq DNA polymerase. The Tba5 plus DNA polymerase mixtures robustly amplified up to 25-kb λ DNA fragments. In addition, the PCR error rate of Tba5 plus3 and Tba5 plus4 mixtures were much lower than those of wild-type Tba5 DNA polymerase, Pfu DNA polymerase, Taq DNA polymerase, and Pfu plus DNA polymerase.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Polymerase Chain Reaction/methods , Thermococcus/enzymology , Archaeal Proteins/genetics , Cloning, Molecular , DNA-Directed DNA Polymerase/genetics , Genes, Archaeal , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermococcus/genetics
11.
Genome Announc ; 4(1)2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26769929

ABSTRACT

We report here the complete sequence and fully manually curated annotation of the genome of strain Ch5, a new member of the piezophilic hyperthermophilic species Thermococcus barophilus.

12.
Biochim Biophys Acta ; 1851(3): 239-47, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25499607

ABSTRACT

Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-ß-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.


Subject(s)
G(M1) Ganglioside/analogs & derivatives , G(M1) Ganglioside/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Membrane Microdomains/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Cattle , Cell Survival/drug effects , Dinoprostone/antagonists & inhibitors , Dinoprostone/biosynthesis , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Escherichia coli/chemistry , Gene Expression Regulation , Lipopolysaccharides/toxicity , Male , Membrane Microdomains/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , PC12 Cells , Primary Cell Culture , Protein Transport , Rana temporaria , Rats , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Urinary Bladder/cytology , Urinary Bladder/drug effects , Urinary Bladder/metabolism , beta-Cyclodextrins/pharmacology
13.
Neurochem Res ; 39(11): 2262-75, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25216715

ABSTRACT

Ganglioside GM1 at micro- and nanomolar concentrations was shown to increase the viability of pheochromocytoma PC12 cells exposed to hydrogen peroxide and diminish the accumulation of reactive oxygen species and oxidative inactivation of Na(+),K(+)-ATPase, the effects of micromolar GM1 being more pronounced than those of nanomolar GM1. These effects of GM1 were abolished by Trk receptor tyrosine kinase inhibitor and diminished by MEK1/2, phosphoinositide 3-kinase and protein kinase C inhibitors. Hydrogen peroxide activates Trk tyrosine kinase; Akt and ERK1/2 are activated downstream of this protein kinase. GM1 was found to activate Trk receptor tyrosine kinase in PC12 cells. GM1 (100 nM and 10 µM) increased the basal activity of Akt, but did not change Akt activity in cells exposed to hydrogen peroxide. Basal ERK1/2 activity in PC12 cells was increased by GM1 at a concentration of 10 µM, but not at nanomolar concentrations. Activation of ERK1/2 by hydrogen peroxide was enhanced by GM1 at a concentration of 10 µM and to a lesser extent at a concentration of 100 nM. Thus, the protective and metabolic effects of GM1 ganglioside on PC12 cells exposed to hydrogen peroxide appear to depend on the activation of Trk receptor tyrosine kinase and downstream activation of Akt and ERK1/2.


Subject(s)
G(M1) Ganglioside/metabolism , Hydrogen Peroxide/pharmacology , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , PC12 Cells , Rats , Receptor, trkA/metabolism
14.
Int J Syst Evol Microbiol ; 64(Pt 9): 3307-3313, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24994778

ABSTRACT

A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain Rift-s3(T), was isolated from a deep-sea sample containing Riftia pachyptila sheath from Guaymas Basin, Gulf of California. Cells of the novel isolate were rods, 0.3-0.8 µm in width and 1.5-10 µm in length, surrounded by a sheath-like structure (toga). Strain Rift-s3(T) grew at temperatures ranging from 44 to 75 °C, at pH 5.5 to 8.0, and with NaCl concentrations of 3 to 60 g l(-1). Under optimum conditions (65 °C, pH 6.0, NaCl 25 g l(-1)), the doubling time was 30 min. The isolate was able to ferment mono-, oligo- and polysaccharides including cellulose, chitin, xylan and pectin, and proteins including ß-keratins, casein and gelatin. Acetate, hydrogen and carbon dioxide were the main products of glucose fermentation. The G+C content of the DNA was 30 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed the affiliation of strain Rift-s3(T) with the genus Thermosipho, with Thermosipho atlanticus Ob7(T) as the closest relative (96.5 % 16S rRNA gene sequence similarity). Based on the phylogenetic analysis and physiological properties of the novel isolate we propose a novel species of the genus Thermosipho, Thermosipho activus sp. nov., with Rift-s3(T) ( = DSM 26467(T) = VKM B-2803(T)) as the type strain.


Subject(s)
Gram-Negative Anaerobic Straight, Curved, and Helical Rods/classification , Phylogeny , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , California , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fermentation , Gram-Negative Anaerobic Straight, Curved, and Helical Rods/genetics , Gram-Negative Anaerobic Straight, Curved, and Helical Rods/isolation & purification , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
15.
Int J Mol Sci ; 13(9): 11543-11568, 2012.
Article in English | MEDLINE | ID: mdl-23109870

ABSTRACT

The aim of this work was to compare protective and anti-apoptotic effects of α-tocopherol at nanomolar and micromolar concentrations against 0.2 mM H(2)O(2)-induced toxicity in the PC12 neuronal cell line and to reveal protein kinases that contribute to α-tocopherol protective action. The protection by 100 nM α-tocopherol against H(2)O(2)-induced PC12 cell death was pronounced if the time of pre-incubation with α-tocopherol was 3-18 h. For the first time, the protective effect of α-tocopherol was shown to depend on its concentration in the nanomolar range (1 nM < 10 nM < 100 nM), if the pre-incubation time was 18 h. Nanomolar and micromolar α-tocopherol decreased the number of PC12 cells in late apoptosis induced by H(2)O(2) to the same extent if pre-incubation time was 18 h. Immunoblotting data showed that α-tocopherol markedly diminished the time of maximal activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and protein kinase B (Akt)-induced in PC12 cells by H(2)O(2). Inhibitors of MEK 1/2, PI 3-kinase and protein kinase C (PKC) diminished the protective effect of α-tocopherol against H(2)O(2)-initiated toxicity if the pre-incubation time was long. The modulation of ERK 1/2, Akt and PKC activities appears to participate in the protection by α-tocopherol against H(2)O(2)-induced death of PC12 cells. The data obtained suggest that inhibition by α-tocopherol in late stage ERK 1/2 and Akt activation induced by H(2)O(2) in PC12 cells makes contribution to its protective effect, while total inhibition of these enzymes is not protective.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Hydrogen Peroxide/toxicity , Neurons/pathology , alpha-Tocopherol/pharmacology , Animals , Cell Line, Tumor , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Neurons/drug effects , Oxidative Stress/drug effects , PC12 Cells , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase C/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar
16.
ScientificWorldJournal ; 2012: 136063, 2012.
Article in English | MEDLINE | ID: mdl-22619586

ABSTRACT

To clarify the role of mitochondrial electron transport chain (mtETC) in heavy-metal-induced neurotoxicity, we studied action of Cd(2+), Hg(2+), and Cu(2+) on cell viability, intracellular reactive oxygen species formation, respiratory function, and mitochondrial membrane potential of rat cell line PC12. As found, the metals produced, although in a different way, dose- and time-dependent changes of all these parameters. Importantly, Cd(2+) beginning from 10 [mu]M and already at short incubation time (3 h) significantly inhibited the FCCP-uncoupled cell respiration; besides, practically the complete inhibition of the respiration was reached after 3 h incubation with 50 [mu]M Hg(2+) or 500 [mu]M Cd(2+), whereas even after 48 h exposure with 500 [mu]M Cu(2+), only a 50% inhibition of the respiration occurred. Against the Cd(2+)-induced cell injury, not only different antioxidants and mitochondrial permeability transition pore inhibitors were protective but also such mtETC effectors as FCCP and stigmatellin (complex III inhibitor). However, all mtETC effectors used did not protect against the Hg(2+)- or Cu(2+)-induced cell damage. Notably, stigmatellin was shown to be one of the strongest protectors against the Cd(2+)-induced cell damage, producing a 15-20% increase in the cell viability. The mechanisms of the mtETC involvement in the heavy-metal-induced mitochondrial membrane permeabilization and cell death are discussed.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Mercury/toxicity , Mitochondria/drug effects , Animals , Electron Transport , Mitochondria/physiology , PC12 Cells , Rats , Reactive Oxygen Species/metabolism
17.
Front Microbiol ; 3: 132, 2012.
Article in English | MEDLINE | ID: mdl-22529840

ABSTRACT

Carbon monoxide (CO) is commonly known as a toxic gas, yet both cultivation studies and emerging genome sequences of bacteria and archaea establish that CO is a widely utilized microbial growth substrate. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases ([Ni,Fe]-CODHs) in currently available genomic sequence databases. Currently, 185 out of 2887, or 6% of sequenced bacterial and archaeal genomes possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. Many genomes encode multiple copies of [Ni,Fe]-CODH genes whose functions and regulation are correlated with their associated gene clusters. The phylogenetic analysis of this extended protein family revealed six distinct clades; many clades consisted of [Ni,Fe]-CODHs that were encoded by microbes from disparate phylogenetic lineages, based on 16S rRNA sequences, and widely ranging physiology. To more clearly define if the branching patterns observed in the [Ni,Fe]-CODH trees are due to functional conservation vs. evolutionary lineage, the genomic context of the [Ni,Fe]-CODH gene clusters was examined, and superimposed on the phylogenetic trees. On the whole, there was a correlation between genomic contexts and the tree topology, but several functionally similar [Ni,Fe]-CODHs were found in different clades. In addition, some distantly related organisms have similar [Ni,Fe]-CODH genes. Thermosinus carboxydivorans was used to observe horizontal gene transfer (HGT) of [Ni,Fe]-CODH gene clusters by applying Kullback-Leibler divergence analysis methods. Divergent tetranucleotide frequency and codon usage showed that the gene cluster of T. carboxydivorans that encodes a [Ni,Fe]-CODH and an energy-converting hydrogenase is dissimilar to its whole genome but is similar to the genome of the phylogenetically distant Firmicute, Carboxydothermus hydrogenoformans. These results imply that T carboxydivorans acquired this gene cluster via HGT from a relative of C. hydrogenoformans.

18.
J Bacteriol ; 193(24): 7019-20, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22123768

ABSTRACT

Analysis of the complete genome of Thermococcus sp. strain AM4, which was the first lithotrophic Thermococcales isolate described and the first archaeal isolate to exhibit a capacity for hydrogenogenic carboxydotrophy, reveals a proximity with Thermococcus gammatolerans, corresponding to close but distinct species that differ significantly in their lithotrophic capacities.


Subject(s)
Carbon Monoxide/metabolism , Genome, Archaeal , Hydrogen/metabolism , Sulfides/metabolism , Thermococcus/genetics , Autotrophic Processes , Base Sequence , Hot Temperature , Molecular Sequence Data , Oxidation-Reduction , Seawater/microbiology , Thermococcus/isolation & purification , Thermococcus/metabolism
19.
Extremophiles ; 15(3): 319-25, 2011 May.
Article in English | MEDLINE | ID: mdl-21387195

ABSTRACT

Carbon monoxide (CO) is one of the common gaseous compounds found in hot volcanic environments. It is known to serve as the growth substrate for a number of thermophilic prokaryotes, both aerobic and anaerobic. The goal of this work was to study the process of anaerobic transformation of CO by microbial communities inhabiting natural thermal environments: hot springs of Uzon Caldera, Kamchatka. The anaerobic microbial community of Treshchinny Spring (80°C, pH 6.5) was found to exhibit two peaks of affinity for CO (K (S1) = 54 nM and K (S2) = 1 µM). The actual rate of anaerobic CO transformation by the microbial community of this spring, calculated after obtaining the concentration dependence curve and extrapolated to the natural concentration of CO dissolved in the hot spring water (20 nM), was found to be 120 µmol l(-1) of sediment day(-1). In all the hot springs studied, more than 90% of the carbon of (14)CO upon anaerobic incubation was recovered as (14)CO(2). From 1 to 5% of (14)CO was transformed to volatile fatty acids (VFA). The number of microorganisms capable of anaerobic CO oxidation determined by dilution-to-extinction method reached 10(6) cells ml(-1) of sediment. CO-transforming anaerobic thermophilic microorganisms isolated from the springs under study exhibited hydrogenogenic type of CO oxidation and belonged to the bacterial genera Carboxydocella and Dictyoglomus. These data suggest a significant role of hydrogenogenic carboxydotrophic prokaryotes in anaerobic CO transformation in Uzon Caldera hot springs.


Subject(s)
Bacteria, Anaerobic/metabolism , Carbon Monoxide/metabolism , Hot Springs/microbiology , Water Microbiology , Adaptation, Physiological , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/isolation & purification , Biodiversity , Carbon Dioxide/metabolism , DNA, Bacterial/isolation & purification , Fatty Acids, Volatile/metabolism , Geologic Sediments/microbiology , Hot Temperature , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Ribotyping , Russia , Species Specificity
20.
Int J Syst Evol Microbiol ; 61(Pt 10): 2532-2537, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21131500

ABSTRACT

An anaerobic, thermophilic bacterium, strain SET IS-9(T), was isolated from an Icelandic hot spring. Cells of strain SET IS-9(T) are short, slightly curved, motile rods. The strain grows chemolithotrophically on CO, producing equimolar quantities of H(2) and CO(2). It also grows fermentatively on lactate or pyruvate in the presence of yeast extract (0.2 g l(-1)). Products of pyruvate fermentation are acetate, CO(2) and H(2). Growth occurs at 50-70 °C, with an optimum at 65 °C, and at pH 5.0-8.0, with an optimum at pH 5.5-6.0. The generation time during chemolithotrophic growth on CO under optimal conditions is 2.0 h. 16S rRNA gene sequence analysis suggested that the organism belongs to the genus Carboxydothermus. On the basis of phenotypic features and phylogenetic analysis, Carboxydothermus islandicus sp. nov. is proposed, with the type strain SET IS-9(T) ( = DSM 21830(T)  = VKM B-2561(T)). An emended description of the genus Carboxydothermus is also given.


Subject(s)
Carbon Monoxide/metabolism , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/isolation & purification , Hot Springs/microbiology , Hydrogen/metabolism , Anaerobiosis , Carbon Dioxide , Chemoautotrophic Growth , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/physiology , Hot Temperature , Hydrogen-Ion Concentration , Iceland , Lactates/metabolism , Locomotion , Molecular Sequence Data , Phylogeny , Pyruvic Acid/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...