Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(5): 104690, 2023 05.
Article in English | MEDLINE | ID: mdl-37037304

ABSTRACT

The pancreatic hormone glucagon activates the glucagon receptor (GCGR), a class B seven-transmembrane G protein-coupled receptor that couples to the stimulatory heterotrimeric G protein and provokes PKA-dependent signaling cascades vital to hepatic glucose metabolism and islet insulin secretion. Glucagon-stimulation also initiates recruitment of the endocytic adaptors, ßarrestin1 and ßarrestin2, which regulate desensitization and internalization of the GCGR. Unlike many other G protein-coupled receptors, the GCGR expressed at the plasma membrane is constitutively ubiquitinated and upon agonist-activation, internalized GCGRs are deubiquitinated at early endosomes and recycled via Rab4-containing vesicles. Herein we report a novel link between the ubiquitination status and signal transduction mechanism of the GCGR. In the deubiquitinated state, coupling of the GCGR to Gs is diminished, while binding to ßarrestin is enhanced with signaling biased to a ßarrestin1-dependent p38 mitogen activated protein kinase (MAPK) pathway. This ubiquitin-dependent signaling bias arises through the modification of lysine333 (K333) on the cytoplasmic face of transmembrane helix V. Compared with the GCGR-WT, the mutant GCGR-K333R has impaired ubiquitination, diminished G protein coupling, and PKA signaling but unimpaired potentiation of glucose-stimulated-insulin secretion in response to agonist-stimulation, which involves p38 MAPK signaling. Both WT and GCGR-K333R promote the formation of glucagon-induced ßarrestin1-dependent p38 signaling scaffold that requires canonical upstream MAPK-Kinase3, but is independent of Gs, Gi, and ßarrestin2. Thus, ubiquitination/deubiquitination at K333 in the GCGR defines the activation of distinct transducers with the potential to influence various facets of glucagon signaling in health and disease.


Subject(s)
Glucagon , Receptors, Glucagon , Ubiquitination , Glucagon/metabolism , Glucose/metabolism , Liver/metabolism , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism , Humans , HEK293 Cells
2.
Nat Commun ; 13(1): 6826, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369272

ABSTRACT

Communication across membranes controls critical cellular processes and is achieved by receptors translating extracellular signals into selective cytoplasmic responses. While receptor tertiary structures can be readily characterized, receptor associations into quaternary structures are challenging to study and their implications in signal transduction remain poorly understood. Here, we report a computational approach for predicting receptor self-associations, and designing receptor oligomers with various quaternary structures and signaling properties. Using this approach, we designed chemokine receptor CXCR4 dimers with reprogrammed binding interactions, conformations, and abilities to activate distinct intracellular signaling proteins. In agreement with our predictions, the designed CXCR4s dimerized through distinct conformations and displayed different quaternary structural changes upon activation. Consistent with the active state models, all engineered CXCR4 oligomers activated the G protein Gi, but only specific dimer structures also recruited ß-arrestins. Overall, we demonstrate that quaternary structures represent an important unforeseen mechanism of receptor biased signaling and reveal the existence of a bias switch at the dimer interface of several G protein-coupled receptors including CXCR4, mu-Opioid and type-2 Vasopressin receptors that selectively control the activation of G proteins vs ß-arrestin-mediated pathways. The approach should prove useful for predicting and designing receptor associations to uncover and reprogram selective cellular signaling functions.


Subject(s)
Arrestins , Signal Transduction , Arrestins/metabolism , beta-Arrestins/metabolism , Signal Transduction/physiology , Receptors, G-Protein-Coupled/metabolism , GTP-Binding Proteins/metabolism
3.
ACS Pharmacol Transl Sci ; 4(5): 1614-1627, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34661078

ABSTRACT

Melatonin is a hormone mainly produced by the pineal gland and MT1 is one of the two G protein-coupled receptors (GPCRs) mediating its action. Despite an increasing number of available GPCR crystal structures, the molecular mechanism of activation of a large number of receptors, including MT1, remains poorly understood. The purpose of this study is to elucidate the structural elements involved in the process of MT1's activation using naturally occurring variants affecting its function. Thirty-six nonsynonymous variants, including 34 rare ones, were identified in MTNR1A (encoding MT1) from a cohort of 8687 individuals and their signaling profiles were characterized using Bioluminescence Resonance Energy Transfer-based sensors probing 11 different signaling pathways. Computational analysis of the experimental data allowed us to group the variants in clusters according to their signaling profiles and to analyze the position of each variant in the context of the three-dimensional structure of MT1 to link functional selectivity to structure. MT1 variant signaling profiles revealed three clusters characterized by (1) wild-type-like variants, (2) variants with selective defect of ßarrestin-2 recruitment, and (3) severely defective variants on all pathways. Our structural analysis allows us to identify important regions for ßarrestin-2 recruitment as well as for Gα12 and Gα15 activation. In addition to identifying MT1 domains differentially controlling the activation of the various signaling effectors, this study illustrates how natural variants can be used as tools to study the molecular mechanisms of receptor activation.

4.
Oncogene ; 40(12): 2243-2257, 2021 03.
Article in English | MEDLINE | ID: mdl-33649538

ABSTRACT

Mdm2 antagonizes the tumor suppressor p53. Targeting the Mdm2-p53 interaction represents an attractive approach for the treatment of cancers with functional p53. Investigating mechanisms underlying Mdm2-p53 regulation is therefore important. The scaffold protein ß-arrestin2 (ß-arr2) regulates tumor suppressor p53 by counteracting Mdm2. ß-arr2 nucleocytoplasmic shuttling displaces Mdm2 from the nucleus to the cytoplasm resulting in enhanced p53 signaling. ß-arr2 is constitutively exported from the nucleus, via a nuclear export signal, but mechanisms regulating its nuclear entry are not completely elucidated. ß-arr2 can be SUMOylated, but no information is available on how SUMO may regulate ß-arr2 nucleocytoplasmic shuttling. While we found ß-arr2 SUMOylation to be dispensable for nuclear import, we identified a non-covalent interaction between SUMO and ß-arr2, via a SUMO interaction motif (SIM), that is required for ß-arr2 cytonuclear trafficking. This SIM promotes association of ß-arr2 with the multimolecular RanBP2/RanGAP1-SUMO nucleocytoplasmic transport hub that resides on the cytoplasmic filaments of the nuclear pore complex. Depletion of RanBP2/RanGAP1-SUMO levels result in defective ß-arr2 nuclear entry. Mutation of the SIM inhibits ß-arr2 nuclear import, its ability to delocalize Mdm2 from the nucleus to the cytoplasm and enhanced p53 signaling in lung and breast tumor cell lines. Thus, a ß-arr2 SIM nuclear entry checkpoint, coupled with active ß-arr2 nuclear export, regulates its cytonuclear trafficking function to control the Mdm2-p53 signaling axis.


Subject(s)
GTPase-Activating Proteins/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-mdm2/genetics , SUMO-1 Protein/genetics , Tumor Suppressor Protein p53/genetics , beta-Arrestin 2/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoskeleton/genetics , Cytoskeleton/metabolism , Humans , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Nuclear Export Signals/genetics , Signal Transduction/genetics , Sumoylation/genetics
5.
J Biol Chem ; 295(30): 10153-10167, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32439801

ABSTRACT

Agonist stimulation of G-protein-coupled receptors (GPCRs) typically leads to phosphorylation of GPCRs and binding to multifunctional proteins called ß-arrestins (ßarrs). The GPCR-ßarr interaction critically contributes to GPCR desensitization, endocytosis, and downstream signaling, and GPCR-ßarr complex formation can be used as a generic readout of GPCR and ßarr activation. Although several methods are currently available to monitor GPCR-ßarr interactions, additional sensors to visualize them may expand the toolbox and complement existing methods. We have previously described antibody fragments (FABs) that recognize activated ßarr1 upon its interaction with the vasopressin V2 receptor C-terminal phosphopeptide (V2Rpp). Here, we demonstrate that these FABs efficiently report the formation of a GPCR-ßarr1 complex for a broad set of chimeric GPCRs harboring the V2R C terminus. We adapted these FABs to an intrabody format by converting them to single-chain variable fragments and used them to monitor the localization and trafficking of ßarr1 in live cells. We observed that upon agonist simulation of cells expressing chimeric GPCRs, these intrabodies first translocate to the cell surface, followed by trafficking into intracellular vesicles. The translocation pattern of intrabodies mirrored that of ßarr1, and the intrabodies co-localized with ßarr1 at the cell surface and in intracellular vesicles. Interestingly, we discovered that intrabody sensors can also report ßarr1 recruitment and trafficking for several unmodified GPCRs. Our characterization of intrabody sensors for ßarr1 recruitment and trafficking expands currently available approaches to visualize GPCR-ßarr1 binding, which may help decipher additional aspects of GPCR signaling and regulation.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Protein Transport , Receptors, G-Protein-Coupled/genetics , beta-Arrestin 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...