Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2571: 207-239, 2023.
Article in English | MEDLINE | ID: mdl-36152164

ABSTRACT

Metabolomics is the latest of the omics sciences. It attempts to measure and characterize metabolites-small chemical compounds <1500 Da-on cells, tissue, or biofluids, which are usually products of biological reactions. As metabolic reactions are closer to the phenotype, metabolomics has emerged as an attractive science for various areas of research, including personalized medicine. However, due to the complexity of data obtained and the absence of curated databases for metabolite identification, data processing is the major bottleneck in this area since most technicians lack the required bioinformatics expertise to process datasets in a reliable and fast manner. The aim of this chapter is to describe the available tools for data processing that makes an inexperienced researcher capable of obtaining reliable results without having to undergo through huge parametrization steps.


Subject(s)
Metabolomics , Databases, Factual , Mass Spectrometry/methods , Metabolomics/methods , Phenotype
2.
Anal Chem ; 93(31): 10772-10778, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34320315

ABSTRACT

Untargeted metabolomics using liquid chromatography coupled to mass spectrometry (LC-MS) allows the detection of thousands of metabolites in biological samples. However, LC-MS data annotation is still considered a major bottleneck in the metabolomics pipeline since only a small fraction of the metabolites present in the sample can be annotated with the required confidence level. Here, we introduce mWISE (metabolomics wise inference of speck entities), an R package for context-based annotation of LC-MS data. The algorithm consists of three main steps aimed at (i) matching mass-to-charge ratio values to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, (ii) clustering and filtering the potential KEGG candidates, and (iii) building a final prioritized list using diffusion in graphs. The algorithm performance is evaluated with three publicly available studies using both positive and negative ionization modes. We have also compared mWISE to other available annotation algorithms in terms of their performance and computation time. In particular, we explored four different configurations for mWISE, and all four of them outperform xMSannotator (a state-of-the-art annotator) in terms of both performance and computation time. Using a diffusion configuration that combines the biological network obtained from the FELLA R package and raw scores, mWISE shows a sensitivity mean (standard deviation) across data sets of 0.63 (0.07), while xMSannotator achieves a sensitivity of 0.55 (0.19). We have also shown that the chemical structures of the compounds proposed by mWISE are closer to the original compounds than those proposed by xMSannotator. Finally, we explore the diffusion prioritization separately, showing its key role in the annotation process. mWISE is freely available on GitHub (https://github.com/b2slab/mWISE) under a GPL license.


Subject(s)
Algorithms , Metabolomics , Chromatography, Liquid , Diffusion , Mass Spectrometry , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...