Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 545: 111573, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35065200

ABSTRACT

Free fatty acid receptor 1 phosphorylation sites were studied using mutants, including a) a mutant with T215V in the third intracellular loop (3IL), b) another with changes in the carboxyl terminus (C-term): T287V, T293V, S298A, and c) a mutant with all of these changes (3IL/C-term). Agonist-induced increases in intracellular calcium were similar between cells expressing wild-type or mutant receptors. In contrast, agonist-induced FFA1 receptor phosphorylation was reduced in mutants compared to wild type. Phorbol ester-induced FFA1 receptor phosphorylation was rapid and robust in cells expressing the wild-type receptor and essentially abolished in the mutants. Agonist-induced ERK 1/2 phosphorylation and receptor internalization were decreased in cells expressing the mutant receptors compared to those expressing the wild-type receptor. Our data suggest that the identified sites might participate in receptor phosphorylation, signaling, and internalization.


Subject(s)
Fatty Acids, Nonesterified , Receptors, G-Protein-Coupled/metabolism , Humans , Mutation/genetics , Phosphorylation , Signal Transduction
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201414

ABSTRACT

The lysophosphatidic acid 3 receptor (LPA3) participates in different physiological actions and in the pathogenesis of many diseases through the activation of different signal pathways. Knowledge of the regulation of the function of the LPA3 receptor is a crucial element for defining its roles in health and disease. This review describes what is known about the signaling pathways activated in terms of its various actions. Next, we review knowledge on the structure of the LPA3 receptor, the domains found, and the roles that the latter might play in ligand recognition, signaling, and cellular localization. Currently, there is some information on the action of LPA3 in different cells and whole organisms, but very little is known about the regulation of its function. Areas in which there is a gap in our knowledge are indicated in order to further stimulate experimental work on this receptor and on other members of the LPA receptor family. We are convinced that knowledge on how this receptor is activated, the signaling pathways employed and how the receptor internalization and desensitization are controlled will help design new therapeutic interventions for treating diseases in which the LPA3 receptor is implicated.


Subject(s)
Receptors, Lysophosphatidic Acid/chemistry , Receptors, Lysophosphatidic Acid/metabolism , Animals , Antioxidants/metabolism , Embryo Implantation , Fertility , Humans , Myocardium/metabolism , Neoplasms/metabolism , Phosphorylation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...