Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dent J (Basel) ; 12(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38534271

ABSTRACT

The materials used in dentistry for the fabrication of all-ceramic restorations have undergone great and rapid developments over the last two decades. Among the most common ceramic materials in dentistry are those based on zirconium and lithium disilicate. Due to the properties of these materials, they are in great demand in the field of dental restoration production. Thus, dental restorations that will use those materials are commonly machined in CAD/CAM systems, which offer the possibility of manufacturing all-ceramic dental restorations in a very short period of time. This article reviews the modern materials in the field of all-ceramic dental restorations, their manufacturing processes, as well as what determines which ceramic materials are used for the production of CAD/CAM blanks and their production technology.

2.
Antibiotics (Basel) ; 13(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38391561

ABSTRACT

The surface adhesion of bacterial cells and the in vivo biocompatibility of a new ceramic-metal composite made of zirconium dioxide and tantalum were evaluated. Within the framework of an in vitro study using the crystal violet staining and colony counting methods, a relatively similar adhesion of Streptococcus oralis to the 3Y-TZP/Ta biocermet (roughness Ra = 0.12 ± 0.04 µm) and Ti-Al6-V4 titanium alloy (Ra = 0.04 ± 0.01 µm) was found. In addition, in an in vivo preliminary study focused on the histological analysis of a series of rods implanted in the jaws of beagle dogs for a six-month period, the absence of any fibrous tissue or inflammatory reaction at the interface between the implanted 3Y-TZP/Ta biocermets and the new bone was found. Thus, it can be concluded that the developed ceramic-metal biocomposite may be a promising new material for use in dentistry.

3.
Gels ; 9(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37754362

ABSTRACT

Within this work, new aerogels based on graphene oxide are proposed to adsorb salicylic acid (SA) and herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous media. Graphene oxide aerogel (GOA) and reduced graphene oxide aerogel (rGOA) were obtained by freeze-drying processes and then studied by Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. The influence of contact time and the concentration of the adsorbates were also assessed. It was found that equilibrium for high adsorption is reached in 150 min. In a single system, the pseudo-first-order, pseudo-second-order kinetic models, Intraparticle diffusion, and Elovich models were used to discuss the detail of the aerogel adsorbing pollutant. Moreover, the Langmuir, Freundlich, and Temkin adsorption models were applied to describe the equilibrium isotherms and calculate the isotherm constants.

4.
Materials (Basel) ; 15(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431540

ABSTRACT

The main goal of the present work was to synthesize a composite consisting of h-BN particles coated with a γ-Al2O3 nanolayer. A method was proposed for applying nanocrystalline γ-Al2O3 to h-BN particles using a sol-gel technique, which ensures the chemical homogeneity of the composite at the nano level. It has been determined that during crystallization on the h-BN surface, the proportion of spinel in alumina decreases from 40 wt.% in pure γ-Al2O3 to 30 wt.% as a result of the involvement of the B3+ ions from the surface nitride monolayers into the transition complex. For comparison, nano-alumina was synthesized from the same sol under the same conditions as the composite. The characterization of the obtained nanostructured powders was carried out using TEM and XRD. A mechanism is proposed for the formation of a nanostructured γ-Al2O3@h-BN composite during the interaction of Al-containing sol and h-BN suspension in aqueous organic media. The resulting composite is a promising model of powdered raw materials for the development of fine-grained ceramic materials for a wide range of applications.

5.
Materials (Basel) ; 15(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36234286

ABSTRACT

Machining is an indispensable manufacturing process for a wide range of engineering materials, such as metals, ceramics, and composite materials, in which the tool wear is a serious problem, which affects not only the costs and productivity but also the quality of the machined components. Thus, the modification of the cutting tool surface by application of textures on their surfaces is proposed as a very promising method for improving tool life. Surface texturing is a relatively new surface engineering technology, where microscale or nanoscale surface textures are generated on the cutting tool through a variety of techniques in order to improve tribological properties of cutting tool surfaces by reducing the coefficient of friction and increasing wear resistance. In this paper, the studies carried out to date on the texturing of ceramic and superhard cutting tools have been reviewed. Furthermore, the most common methods for creating textures on the surfaces of different materials have been summarized. Moreover, the parameters that are generally used in surface texturing, which should be indicated in all future studies of textured cutting tools in order to have a better understanding of its effects in the cutting process, are described. In addition, this paper proposes a way in which to classify the texture surfaces used in the cutting tools according to their geometric parameters. This paper highlights the effect of ceramic and superhard textured cutting tools in improving the machining performance of difficult-to-cut materials, such as coefficient of friction, tool wear, cutting forces, cutting temperature, and machined workpiece roughness. Finally, a conclusion of the analyzed papers is given.

6.
Materials (Basel) ; 15(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35888466

ABSTRACT

Spray drying is a widely used method of converting liquid material (aqueous or organic solutions, emulsions and suspensions) into a dry powder. Good flowability, narrow size distribution, and controllable morphology are inherent in powders produced by spray drying. This review considers the granulation factors that influence the final properties of the silicon nitride dried powders. The first group includes the types of atomizers, manifolds, and drying chamber configurations. The process parameters fall into the second group and include the following: inlet temperature, atomizing air flow, feed flow rate, drying gas flow rate, outlet temperature, and drying time. Finally, the last group, feedstock parameters, includes many factors such as feed surface tension, feed viscosity, solvent type, solid particle concentration, and additives. Given the large number of factors affecting morphology, particle size and moisture, optimizing the spray drying process is usually achieved by the "trial and error" approach. Nevertheless, some factors such as the effect of a solvent, dispersant, binder, and sintering additives considered in the literature that affect the Si3N4 granulation process were reviewed in the work. By summarizing the data available on silicon nitride powder production, the authors attempt to tackle the problem of its emerging demand in science and industry.

7.
Materials (Basel) ; 15(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35269178

ABSTRACT

SiC-TiB2-TiC composites with matrices consisting of semiconductor material (SiC), conductive materials (TiB2-TiC), or their combination were fabricated by spark plasma sintering (SPS) at 2000 °C in a vacuum under a pressure of 80 MPa for 3 min. The composition and microstructure of the obtained composites were studied by X-ray diffraction and a scanning electron microscope equipped with an energy-dispersive detector. The flexural strength, Vickers hardness, and fracture toughness of SPSed samples were determined. Based on the observations in this work, three variations of the sintering process were proposed with different matrix compositions. The dense (99.7%) 60SiC-25TiB2-15TiC vol.% sintered ceramic composites exhibited the highest strength and hardness values of the studied composites, as well as a fracture toughness of 6.2 MPa·m1/2.

8.
Materials (Basel) ; 14(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34772204

ABSTRACT

The great prospects for introducing the cold sintering process (CSP) into industry determine the importance of finding approaches to reduce the processing time and mechanical pressure required to obtain dense ceramics using CSP. The introducing zinc acetate into the initial ZnO powder of methods, such as impregnation, thermovapor autoclave treatment (TVT), and direct injection of an aqueous solution into a die followed by cold sintering process using a spark plasma sintering unit, was studied. The effect of the introduction methods on the density and grain size of sintered ceramics was analyzed using SEM, dynamic light scattering, IR spectroscopy, and XRD. The impregnation method provides sintered samples with high relative density (over 0.90) and significant grain growth when sintered at 250 °C with a high heating rate of 100 °C/min, under a uniaxial pressure of 80 MPa in a vacuum, and a short isothermic dwell time (5 min). The TVT and aqueous solution direct injection methods showed lower relative densities (0.87 and 0.76, respectively) of CSP ZnO samples. Finally, the development of ideas about the processes occurring in an aqueous medium with CSP and TVT, which are subject to mechanical pressure, is presented.

9.
Materials (Basel) ; 13(3)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033036

ABSTRACT

In this work, we report an available technique for the effective reduction of graphene oxide (GO) and the fabrication of nanostructured zirconia reduced graphene oxide powder via a hydrothermal method. Characterization of the obtained nano-hybrid structure materials was carried out using a scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). The confirmation that GO was reduced and the uniform distribution of zirconia nanoparticles on graphene oxide sheets during synthesis was obtained due to these techniques. This has presented new opportunities and prospects to use this uncomplicated and inexpensive technique for the development of zirconia/graphene nanocomposite powders.

10.
Nanomaterials (Basel) ; 9(10)2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31569355

ABSTRACT

In this work, we characterized the mechanical and electrical properties of zirconia-based ceramic nanocomposites reinforced with 30 and 40 vol. % TiN and fabricated by spark plasma sintering. In addition to their improved mechanical performance, these compositions have sufficient electrical conductivity to allow wire electrical discharge machining (WEDM). The influence of WEDM variables on the roughness and the mechanical strength of samples was analyzed after each cut. The experimental results showed that the roughness of machined surfaces can be reduced by variations in WEDM manufacturing regimes, and, consequently, a drastic drop in flexural strength of workpieces can be avoided. Furthermore, the composites with higher content and homogeneous distribution of the conductive phase exhibited better surface quality as well.

11.
Nanomaterials (Basel) ; 9(2)2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30691050

ABSTRACT

In the present work, the tribological properties of graphene-reinforced Al2O3-SiCw ceramic nanocomposites fabricated by spark plasma sintering were studied against alumina ball. Compared with pure ceramic, the wear resistance of these nanocomposites was approximately two times higher regardless of the applied load. It was confirmed by Raman spectroscopy that the main factor for the improvement of the wear resistance of the Al2O3-SiCw/Graphene materials was related to the formation of protecting tribolayer on worn surfaces, which leads to enough lubrication to reduce both the friction coefficient, and wear rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...