Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-11, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36222246

ABSTRACT

In this work, fern-leaf-like BiVO4 was used to photocatalytically reduce Cr6+ in water. Nanosized BiVO4 displayed bandgap energy and specific surface area of 2.49 eV and 5.65 m2 g-1, respectively. Metallic Au nanoparticles were deposited on the BiVO4 to increase the photocatalytic performance. To optimize the reaction conditions, the sacrificial agents methanol, ethanol, formic acid, dimethyl sulfoxide, and KI were tested, while different catalyst dosages and Au loadings were assessed. The best sacrificial agent was formic acid, which was used at an optimal concentration of 0.01 mol L-1. The complete removal of Cr6+ was attained after 90 min of visible light irradiation using a catalyst dosage of 1.5 g L-1. Depositing metallic Au nanoparticles barely improved the photocatalytic performance, thus unmodified BiVO4 was used to remove Cr6+ in tap water. The matrix effect slowed the photocatalytic process, and the complete removal of Cr6+ was achieved in 120 min. Cr3+ and Cr6+ species were precipitated on the catalyst surface at the end of the photocatalytic process; still, BiVO4 displayed high stability after three reaction cycles.

2.
Environ Sci Pollut Res Int ; 29(28): 42768-42779, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35091948

ABSTRACT

The synthesis and characterization of sodium titanates (ST), and their evaluation in the photocatalytic reduction of nitric oxide (NO) are described herein. The materials were synthesized by a hydrothermal route using 5 M NaOH as the mineralizer agent and a TiO2 content of 0.06 mg/mL (expressed as the mass ratio of TiO2/mL of NaOH), at 170 °C for 48 h, resulting in sodium tri- and hexa-titanates. A nanotubular morphology was observed for the ST, as proved by scanning electron microscopy (SEM); a subsequent heat-treatment at 400 °C allowed a complete transformation of sodium tri- to hexa-titanates and an increase in bandgap. The obtained ST were impregnated with Ag+ and Zn+ cations, ST-Ag and ST-Zn, respectively, to tune the materials' bandgap. XPS analysis of the ST-Ag materials showed evidence of metallic Ag, pointing to the formation of silver nanoparticles, whereas for ST-Zn oxide phases were mainly spotted. The materials were evaluated for the photocatalytic reduction of NO using a reactor fed with a continuous flow rate of NO, generated in situ at a flow of 280 mL/min using nitrogen and a 253-nm UV irradiation source. The photocatalytic tests showed that pristine ST (tri- and hexa-titanates) displayed better performance in the reduction of NO with respect to the impregnated samples (ST-Ag, ST-Zn). Maximum degradation efficiencies of 80% were achieved when 1 g of photocatalyst was used with a flow of 280 mL/min and a 253 nm UV lamp.


Subject(s)
Metal Nanoparticles , Silver , Catalysis , Nitric Oxide , Oxides , Sodium , Sodium Hydroxide , Titanium
3.
Environ Sci Pollut Res Int ; 24(32): 25034-25046, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28920151

ABSTRACT

Metallurgical slag was used for the simultaneous removal of high concentrations of arsenite and arsenate from laboratory solutions and severely contaminated groundwater. Apart from demonstrating the high efficiency of arsenic removal in presence of competing species, the work aims to explore the physicochemical mechanisms of the process by means of microscopy observation and a detailed statistical analysis of existing kinetic and isotherm equations. Fitting was performed by non-linear least squares using weighted residuals; ANOVA and bootstrap methods were used to compare the models. Literature suggests that the metal oxides in the slag are efficient adsorbents of As(III) and (V). However, the low surface area of the slag precludes adsorption; SEM observation provide evidence of a mechanism of co-precipitation of lixiviated cations with contaminant anions. The reaction kinetics provide essential information on the interaction between the contaminants, particularly on the common ion effect in groundwater. The Fritz-Schlünder isotherm allows modelling the saturation effect at low slag doses. The efficiency of the process is demonstrated by an arsenic removal of 99% in groundwater using 4-g slag/L, resulting in an effluent with 0.01 mg As/L, which is below Mexican and international standards for drinking water.


Subject(s)
Arsenates/chemistry , Arsenites/chemistry , Chemical Precipitation , Groundwater/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Anions/chemistry , Groundwater/chemistry , Industrial Waste/analysis , Metallurgy
4.
Water Sci Technol ; 73(5): 1000-9, 2016.
Article in English | MEDLINE | ID: mdl-26942520

ABSTRACT

An experimental design methodology was used to optimize the synthesis of an iron-supported nanocatalyst as well as the inactivation process of Ascaris eggs (Ae) using this material. A factor screening design was used for identifying the significant experimental factors for nanocatalyst support (supported %Fe, (w/w), temperature and time of calcination) and for the inactivation process called the heterogeneous Fenton-like reaction (H2O2 dose, mass ratio Fe/H2O2, pH and reaction time). The optimization of the significant factors was carried out using a face-centered central composite design. The optimal operating conditions for both processes were estimated with a statistical model and implemented experimentally with five replicates. The predicted value of the Ae inactivation rate was close to the laboratory results. At the optimal operating conditions of the nanocatalyst production and Ae inactivation process, the Ascaris ova showed genomic damage to the point that no cell reparation was possible showing that this advanced oxidation process was highly efficient for inactivating this pathogen.


Subject(s)
Ascaris/drug effects , Carbon/chemistry , Ferric Compounds/chemistry , Nanostructures/chemistry , Ovum/chemistry , Water/parasitology , Animals , Hydrogen Peroxide , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...