Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 11: 1359715, 2024.
Article in English | MEDLINE | ID: mdl-38596691

ABSTRACT

Background: A reduced left atrial (LA) strain correlates with the presence of atrial fibrillation (AF). Conventional atrial strain analysis uses two-dimensional (2D) imaging, which is, however, limited by atrial foreshortening and an underestimation of through-plane motion. Retrospective gated computed tomography (RGCT) produces high-fidelity three-dimensional (3D) images of the cardiac anatomy throughout the cardiac cycle that can be used for estimating 3D mechanics. Its feasibility for LA strain measurement, however, is understudied. Aim: The aim of this study is to develop and apply a novel workflow to estimate 3D LA motion and calculate the strain from RGCT imaging. The utility of global and regional strains to separate heart failure in patients with reduced ejection fraction (HFrEF) with and without AF is investigated. Methods: A cohort of 30 HFrEF patients with (n = 9) and without (n = 21) AF underwent RGCT prior to cardiac resynchronisation therapy. The temporal sparse free form deformation image registration method was optimised for LA feature tracking in RGCT images and used to estimate 3D LA endocardial motion. The area and fibre reservoir strains were calculated over the LA body. Universal atrial coordinates and a human atrial fibre atlas enabled the regional strain calculation and the fibre strain calculation along the local myofibre orientation, respectively. Results: It was found that global reservoir strains were significantly reduced in the HFrEF + AF group patients compared with the HFrEF-only group patients (area strain: 11.2 ± 4.8% vs. 25.3 ± 12.6%, P = 0.001; fibre strain: 4.5 ± 2.0% vs. 15.2 ± 8.8%, P = 0.001), with HFrEF + AF patients having a greater regional reservoir strain dyssynchrony. All regional reservoir strains were reduced in the HFrEF + AF patient group, in whom the inferior wall strains exhibited the most significant differences. The global reservoir fibre strain and LA volume + posterior wall reservoir fibre strain exceeded LA volume alone and 2D global longitudinal strain (GLS) for AF classification (area-under-the-curve: global reservoir fibre strain: 0.94 ± 0.02, LA volume + posterior wall reservoir fibre strain: 0.95 ± 0.02, LA volume: 0.89 ± 0.03, 2D GLS: 0.90 ± 0.03). Conclusion: RGCT enables 3D LA motion estimation and strain calculation that outperforms 2D strain metrics and LA enlargement for AF classification. Differences in regional LA strain could reflect regional myocardial properties such as atrial fibrosis burden.

2.
J Am Heart Assoc ; 13(3): e031489, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38240222

ABSTRACT

BACKGROUND: Embolic stroke of unknown source (ESUS) accounts for 1 in 6 ischemic strokes. Current guidelines do not recommend routine cardiac magnetic resonance (CMR) imaging in ESUS, and beyond the identification of cardioembolic sources, there are no data assessing new clinical findings from CMR in ESUS. This study aimed to assess the prevalence of new cardiac and noncardiac findings and to determine their impact on clinical care in patients with ESUS. METHODS AND RESULTS: In this prospective, multicenter, observational study, CMR imaging was performed within 3 months of ESUS. All scans were reported according to standard clinical practice. A new clinical finding was defined as one not previously identified through prior clinical evaluation. A clinically significant finding was defined as one resulting in further investigation, follow-up, or treatment. A change in patient care was defined as initiation of medical, interventional, surgical, or palliative care. From 102 patients recruited, 96 underwent CMR imaging. One or more new clinical findings were observed in 59 patients (61%). New findings were clinically significant in 48 (81%) of these patients. Of 40 patients with a new clinically significant cardiac finding, 21 (53%) experienced a change in care (medical therapy, n=15; interventional/surgical procedure, n=6). In 12 patients with a new clinically significant extracardiac finding, 6 (50%) experienced a change in care (medical therapy, n=4; palliative care, n=2). CONCLUSIONS: CMR imaging identifies new clinically significant cardiac and noncardiac findings in half of patients with recent ESUS. Advanced cardiovascular screening should be considered in patients with ESUS. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04555538.


Subject(s)
Embolic Stroke , Intracranial Embolism , Stroke , Humans , Stroke/diagnostic imaging , Stroke/epidemiology , Prevalence , Prospective Studies , Magnetic Resonance Imaging , Intracranial Embolism/diagnostic imaging , Intracranial Embolism/epidemiology , Risk Factors
3.
Interface Focus ; 13(6): 20230038, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38106921

ABSTRACT

To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling in silico clinical trials at scale (https://github.com/pcmlab/atrialmtk).

4.
Comput Biol Med ; 162: 107009, 2023 08.
Article in English | MEDLINE | ID: mdl-37301099

ABSTRACT

This work presents an open-source software pipeline to create patient-specific left atrial models with fibre orientations and a fibrDEFAULTosis map, suitable for electrophysiology simulations, and quantifies the intra and inter observer reproducibility of the model creation. The semi-automatic pipeline takes as input a contrast enhanced magnetic resonance angiogram, and a late gadolinium enhanced (LGE) contrast magnetic resonance (CMR). Five operators were allocated 20 cases each from a set of 50 CMR datasets to create a total of 100 models to evaluate inter and intra-operator variability. Each output model consisted of: (1) a labelled surface mesh open at the pulmonary veins and mitral valve, (2) fibre orientations mapped from a diffusion tensor MRI (DTMRI) human atlas, (3) fibrosis map extracted from the LGE-CMR scan, and (4) simulation of local activation time (LAT) and phase singularity (PS) mapping. Reproducibility in our pipeline was evaluated by comparing agreement in shape of the output meshes, fibrosis distribution in the left atrial body, and fibre orientations. Reproducibility in simulations outputs was evaluated in the LAT maps by comparing the total activation times, and the mean conduction velocity (CV). PS maps were compared with the structural similarity index measure (SSIM). The users processed in total 60 cases for inter and 40 cases for intra-operator variability. Our workflow allows a single model to be created in 16.72 ± 12.25 min. Similarity was measured with shape, percentage of fibres oriented in the same direction, and intra-class correlation coefficient (ICC) for the fibrosis calculation. Shape differed noticeably only with users' selection of the mitral valve and the length of the pulmonary veins from the ostia to the distal end; fibrosis agreement was high, with ICC of 0.909 (inter) and 0.999 (intra); fibre orientation agreement was high with 60.63% (inter) and 71.77% (intra). The LAT showed good agreement, where the median ± IQR of the absolute difference of the total activation times was 2.02 ± 2.45 ms for inter, and 1.37 ± 2.45 ms for intra. Also, the average ± sd of the mean CV difference was -0.00404 ± 0.0155 m/s for inter, and 0.0021 ± 0.0115 m/s for intra. Finally, the PS maps showed a moderately good agreement in SSIM for inter and intra, where the mean ± sd SSIM for inter and intra were 0.648 ± 0.21 and 0.608 ± 0.15, respectively. Although we found notable differences in the models, as a consequence of user input, our tests show that the uncertainty caused by both inter and intra-operator variability is comparable with uncertainty due to estimated fibres, and image resolution accuracy of segmentation tools.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/diagnostic imaging , Reproducibility of Results , Heart Atria/diagnostic imaging , Heart Atria/pathology , Magnetic Resonance Imaging/methods , Fibrosis , Predictive Value of Tests
5.
Comput Biol Med ; 138: 104872, 2021 11.
Article in English | MEDLINE | ID: mdl-34598070

ABSTRACT

BACKGROUND: Cardiac Resynchronization Therapy (CRT) in dyssynchronous heart failure patients is ineffective in 20-30% of cases. Sub-optimal left ventricular (LV) pacing location can lead to non-response, thus there is interest in LV lead location optimization. Invasive acute haemodynamic response (AHR) measurements have been used to optimize the LV pacing location during CRT implantation. In this manuscript, we aim to predict the optimal lead location (AHR>10%) with non-invasive computed tomography (CT) based measures of cardiac anatomical and mechanical properties, and simulated electrical activation times. METHODS: Non-invasive measurements from CT images and ECG were acquired from 34 patients indicated for CRT upgrade. The LV lead was implanted and AHR was measured at different pacing sites. Computer models of the ventricles were used to simulate the electrical activation of the heart, track the mechanical motion throughout the cardiac cycle and measure the wall thickness of the LV on a patient specific basis. RESULTS: We tested the ability of electrical, mechanical and anatomical indices to predict the optimal LV location. Electrical (RV-LV delay) and mechanical (time to peak contraction) indices were correlated with an improved AHR, while wall thickness was not predictive. A logistic regression model combining RV-LV delay and time to peak contraction was able to predict positive response with 70 ± 11% accuracy and AUROC curve of 0.73. CONCLUSION: Non-invasive electrical and mechanical indices can predict optimal epicardial lead location. Prospective analysis of these indices could allow clinicians to test the AHR at fewer pacing sites and reduce time, costs and risks to patients.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Heart Failure/diagnostic imaging , Heart Failure/therapy , Heart Ventricles/diagnostic imaging , Humans , Treatment Outcome , Ventricular Function, Left
6.
J Cell Sci ; 133(22)2020 11 23.
Article in English | MEDLINE | ID: mdl-33093241

ABSTRACT

Accurate measurements of cell morphology and behaviour are fundamentally important for understanding how disease, molecules and drugs affect cell function in vivo Here, by using muscle stem cell (muSC) responses to injury in zebrafish as our biological paradigm, we established a 'ground truth' for muSC behaviour. This revealed that segmentation and tracking algorithms from commonly used programs are error-prone, leading us to develop a fast semi-automated image analysis pipeline that allows user-defined parameters for segmentation and correction of cell tracking. Cell Tracking Profiler (CTP) is a package that runs two existing programs, HK Means and Phagosight within the Icy image analysis suite, to enable user-managed cell tracking from 3D time-lapse datasets to provide measures of cell shape and movement. We demonstrate how CTP can be used to reveal changes to cell behaviour of muSCs in response to manipulation of the cell cytoskeleton by small-molecule inhibitors. CTP and the associated tools we have developed for analysis of outputs thus provide a powerful framework for analysing complex cell behaviour in vivo from 4D datasets that are not amenable to straightforward analysis.


Subject(s)
Cell Tracking , Zebrafish , Algorithms , Animals , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Movement
7.
SoftwareX ; 12: 100570, 2020.
Article in English | MEDLINE | ID: mdl-34124331

ABSTRACT

Personalised medicine is based on the principle that each body is unique and will respond to therapies differently. In cardiology, characterising patient specific cardiovascular properties would help in personalising care. One promising approach for characterising these properties relies on performing computational analysis of multimodal imaging data. An interactive cardiac imaging environment, which can seamlessly render, manipulate, derive calculations, and otherwise prototype research activities, is therefore sought-after. We developed the Cardiac Electro-Mechanics Research Group Application (CemrgApp) as a platform with custom image processing and computer vision toolkits for applying statistical, machine learning and simulation approaches to study physiology, pathology, diagnosis and treatment of the cardiovascular system. CemrgApp provides an integrated environment, where cardiac data visualisation and workflow prototyping are presented through a common graphical user interface.

8.
J Imaging ; 6(5)2020 May 20.
Article in English | MEDLINE | ID: mdl-34460738

ABSTRACT

In this paper, a novel method for interaction detection is presented to compare the contact dynamics of macrophages in the Drosophila embryo. The study is carried out by a framework called macrosight, which analyses the movement and interaction of migrating macrophages. The framework incorporates a segmentation and tracking algorithm into analysing the motion characteristics of cells after contact. In this particular study, the interactions between cells is characterised in the case of control embryos and Shot mutants, a candidate protein that is hypothesised to regulate contact dynamics between migrating cells. Statistical significance between control and mutant cells was found when comparing the direction of motion after contact in specific conditions. Such discoveries provide insights for future developments in combining biological experiments with computational analysis.

9.
J Imaging ; 5(1)2019 Jan 14.
Article in English | MEDLINE | ID: mdl-34465701

ABSTRACT

This paper presents a novel software framework, called macrosight, which incorporates routines to detect, track, and analyze the shape and movement of objects, with special emphasis on macrophages. The key feature presented in macrosight consists of an algorithm to assess the changes of direction derived from cell-cell contact, where an interaction is assumed to occur. The main biological motivation is the determination of certain cell interactions influencing cell migration. Thus, the main objective of this work is to provide insights into the notion that interactions between cell structures cause a change in orientation. Macrosight analyzes the change of direction of cells before and after they come in contact with another cell. Interactions are determined when the cells overlap and form clumps of two or more cells. The framework integrates a segmentation technique capable of detecting overlapping cells and a tracking framework into a tool for the analysis of the trajectories of cells before and after they overlap. Preliminary results show promise into the analysis and the hypothesis proposed, and lays the groundwork for further developments. The extensive experimentation and data analysis show, with statistical significance, that under certain conditions, the movement changes before and after an interaction are different from movement in controlled cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...