Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
MAGMA ; 36(6): 911-919, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37184611

ABSTRACT

OBJECTIVE: A volume coil with squared slots-end ring was developed to attain improved sensitivity for imaging of rat's brain at 7 T. MATERIAL AND METHODS: The principles of the high cavity resonator for the low-pass case and the law of Biot-Savart were used to derive a theoretical expression of [Formula: see text]. The slotted-end ring resonator showed a theoretical 2.22-fold sensitivity improvement over the standard birdcage coil with similar dimensions. Numerical studies were carried out for the electromagnetic fields and specific absorption rates for our coil and a birdcage coil loaded with a saline-filled spherical phantom and a digital brain of a rat. RESULTS: An improvement of the signal-to-noise ratio (SNR) can be observed for the slotted volume coil over the birdcage regardless of the load used in the electromagnetic simulations. The specific absorption rate simulations show a decrement for the digital brain and quite similar values with the saline solution phantom. Phantom and rat's brain images were acquired at 7 T to prove the viability of the coil design. The experimental noise figure of our coil design was four times less than the standard birdcage with similar dimensions, which showed a 44.5% increase in experimental SNR. DISCUSSION: There is remarkable agreement among the theoretical, numerical and experimental sensitivity values, which all demonstrate that the coil performance for MR imaging of small rodents can be improved using slotted end-rings.


Subject(s)
Brain , Magnetic Resonance Imaging , Rats , Animals , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Phantoms, Imaging , Brain/diagnostic imaging , Head , Equipment Design
2.
Evol Bioinform Online ; 18: 11769343221130730, 2022.
Article in English | MEDLINE | ID: mdl-36330419

ABSTRACT

Background: Zika virus, which is widely spread and infects humans through the bites of Aedes albopictus and Aedes aegypti female mosquitoes, represents a serious global health issue. Objective: The objective of the present study is to computationally characterize Zika virus polyproteins (UniProt Name: PRO_0000443018 [residues 1-3423], PRO_0000445659 [residues 1-3423] and PRO_0000435828 [residues 1-3419]) and their envelope proteins using their physico-chemical properties. Methods: To achieve this, the Polarity Index Method (PIM) profile and the Protein Intrinsic Disorder Predisposition (PIDP) profile of 3 main groups of proteins were evaluated: structural proteins extracted from specific Databases, Zika virus polyproteins, and their envelope proteins (E) extracted from UniProt Database. Once the PIM profile of the Zika virus envelope proteins (E) was obtained and since the Zika virus polyproteins were also identified with this profile, the proteins defined as "reviewed proteins" extracted from the UniProt Database were searched for the similar PIM profile. Finally, the difference between the PIM profiles of the Zika virus polyproteins and their envelope proteins (E) was tested using 2 non-parametric statistical tests. Results: It was found and tested that the PIM profile is an efficient discriminant that allows obtaining a "computational fingerprint" of each Zika virus polyprotein from its envelope protein (E). Conclusion: PIM profile represents a computational tool, which can be used to effectively discover Zika virus polyproteins from Databases, from their envelope proteins (E) sequences.

3.
J Pain Res ; 15: 857-865, 2022.
Article in English | MEDLINE | ID: mdl-35386425

ABSTRACT

Objective: Pain constitutes an essential alarm for preserving the organism's integrity. Damage to the nervous system produces a pathological condition known as neuropathic pain. Purpose: Blood oxygenation level-dependent (BOLD) and functional magnetic resonance imaging (fMRI) have been widely used to map neuroanatomy and the active regions of interest (ROI) of nociceptive processing. Our study explored the brain's BOLD response in rats after thermal noxious stimulation, immediately after sciatic nerve damage and during 75 minutes after surgical lesion of the sciatic nerve. Methods: Nine male Wistar rats were tested; the experiments were performed on a 7-Tesla /21-cm Varian Agilent system. This approach allowed, for the first time, to measure in vivo the BOLD changes in brain regions involved with the pain process: cingulated (ACC), somatosensory (S1), and insular cortices (IC), as well as thalamus (Th) and ventral tegmental area (VTA) related with acute thermal pain and during the early stages of sciatic denervation that produce neuropathic pain. Results: During thermonociception scan, all subjects showed BOLD activation in the ROIs determined as ACC, S1, Th, IC and VTA. After denervation, these regions continued to show activation with a slow decrement in intensity for the duration of the experiment. The results suggest that these brain structures are overactive during the genesis of neuropathic pain. Conclusion: The study shows for the first time continuous activation of the pain matrix following an acute thermal nociceptive stimulus followed by neuropathic damage. These results have given insight into the early stages of the development of neuropathic pain in vivo.

4.
MAGMA ; 28(6): 599-608, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26449714

ABSTRACT

OBJECTIVE: A scaled-down slotted surface radio frequency (RF) coil was built, and the specific absorbance rate (SAR) in 100 mg of tissue (SAR100 mg) produced in a rat brain phantom was computed at 7 T. MATERIALS AND METHODS: A slotted coil 2-cm in diameter with six circular slots was developed. Its theoretical and experimental performance was computed and compared using the signal-to-noise ratio (SNR) expression and phantom images obtained with a spin echo sequence. Electromagnetic simulations were performed using the finite integral method with saline sphere and rat brain phantoms. SAR100 mg was computed for the circular coil, by varying its radius, and was also computed for the slotted coil. RESULTS: The slotted coil quality factor gave a twofold increment over the circular coil, and noise was reduced by 17%. The experimental SNR of the slotted coil produced a 30% improvement for points near the coil plane. The theoretical and experimental results showed substantial agreement. Axial map histograms and profiles showed greater SAR100 mg values for the circular coil than for the slotted coil. CONCLUSIONS: The slotted surface coil offers improved performance and low SAR100 mg for rat brain imaging at 7 T. This approach may be used with new RF coils to investigate SAR in humans.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Animals , Artifacts , Brain Mapping/methods , Equipment Design , Models, Statistical , Phantoms, Imaging , Rats , Rats, Wistar , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...