Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-10, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36282279

ABSTRACT

Contaminants from cooling water waste (CWW) generated by industries represent an environmental hazard if discharged into aquatic bodies and soil without treatment. Most treatment strategies are energy-demanding and costly; hence, low-cost and sustainable treatment alternative technologies are needed. The present study proposed cyanobacteria culture as a low-cost biological method to treat cooling water waste (CWW) while simultaneously producing carbohydrates. For this purpose, CWW from a cooling tower was evaluated in different dilutions with domestic wastewater (DW) (DW25% -CWW75%, DW50% -CWW50%, DW25% -CWW75%, DW100%, and CWW100%) (v/v). The CWW provided a high content of inorganic carbon and low content of N and P, which resulted in a high C/N ratio promoting a fast carbohydrate accumulation but low biomass production. In contrast, cultures with higher DW concentrations achieved similar results in 14 days. The best results were obtained with DW25% -CWW75%, achieving up to 52 ± 18% carbohydrate content on day 8, with the highest biomass concentration of 1.7 ± 0.12 g L-1 on day 14. This culture removed >94% of TAN, N-NO3- and P-PO43-, and 84 ± 10.82% of COD. This strategy could be a promising approach to treating CWW and DW from the same industry and producing value-added products and bioenergy.

2.
Sci Total Environ ; 798: 149227, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34332386

ABSTRACT

The production of carbohydrate-enriched biomass from waste streams as a sustainable biofuel precursor is a noteworthy endeavor. This study investigates the long-term microalgae cultivated under low domestic wastewater loads and different hydraulic retention times (HRT) in a semi-continuous photobioreactor. The influence of operational conditions, the microalgae interaction with carbon, nutrients availability, and microbial population in terms of carbohydrate content were elucidated. The results revealed that the operation at similar low nutrients and carbon loads maintained at three different hydraulic retention times (HRT) of 10, 8, and 6 days caused different patterns in nutrients uptake and biomass composition. Particularly, the carbohydrate accumulation was greatly influenced by the unbalance in the N:P ratios than complete depletion of the nutrients. Hence, during the period operated at HRT of 10 d, high nutrients removal efficiencies were observed while gradually increasing carbohydrate content up to 57% in dry cell weight (DCW). Afterward, the decrease to 8 and 6 d of HRT showed lower nutrient consumption with depleted alkalinity, reaching an appreciably high carbohydrate accumulation of up to 46%, and 56%, respectively. The biomass concentration decreased in the order of HRT of 10, 8, and 6 days. This study demonstrated that microalgae adapted to low carbon and nutrient loads could still accumulate high carbohydrate at shorter HRT using domestic wastewater as substrate.


Subject(s)
Microalgae , Wastewater , Biomass , Carbohydrates , Nitrogen/analysis , Photobioreactors
SELECTION OF CITATIONS
SEARCH DETAIL
...