Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 64(13): 18, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37819742

ABSTRACT

Purpose: N6-methyladenosine (m6A) is a commonly occurring modification of mRNAs, catalyzed by a complex containing methyltransferase like 3 (METTL3). Our research aims to explore how METTL3-dependent m6A modification affects the functions of retinal endothelial cells (RECs). Methods: An oxygen-induced retinopathy (OIR) mouse model was established, and RECs were isolated using magnetic beads method. Human retinal microvascular endothelial cells (HRMECs) were treated with normoxia (21% O2) or hypoxia (1% O2). Dot blot assay determined m6A modification levels. Quantitative RT-PCR and Western blot detected the mRNA and protein expression levels of the target candidates, respectively. Genes were knocked down by small interfering RNA transfection. Matrigel-based angiogenesis and transwell assays evaluated the abilities of endothelial tube formation and migration, respectively. Methylated RNA immunoprecipitation-qPCR determined the levels of m6A modification in the target genes. Results: The m6A modification levels were significantly upregulated in the retinas and RECs of OIR mice. Exposure to hypoxia significantly elevated both METTL3 expression and m6A modification levels in HRMECs. METTL3 knockdown curtailed endothelial tube formation and migration in vitro under both normoxic and hypoxic conditions. Concurrently, this knockdown in HRMECs resulted in reduced m6A modification levels of MMP2 and TIE2 transcripts, subsequently leading to a decrease in their respective protein expressions. Notably, knockdown of MMP2 and TIE2 also markedly inhibited the angiogenic activities of HRMECs. Conclusions: METTL3-mediated m6A modification promotes the angiogenic behaviors of RECs by targeting MMP2 and TIE2, suggesting its significance in retinal angiogenesis and METTL3 as a potential therapeutic target.


Subject(s)
Endothelial Cells , Retinal Diseases , Humans , Animals , Mice , Matrix Metalloproteinase 2/genetics , Retina , Hypoxia , Methyltransferases/genetics
2.
Exp Mol Med ; 50(3): e451, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29497171

ABSTRACT

Sleep deficiency is a common public health problem associated with many diseases, such as obesity and cardiovascular disease. In this study, we established a sleep deprivation (SD) mouse model using a 'stick over water' method and observed the effect of sleep deficiency on ocular surface health. We found that SD decreased aqueous tear secretion; increased corneal epithelial cell defects, corneal sensitivity, and apoptosis; and induced squamous metaplasia of the corneal epithelium. These pathological changes mimic the typical features of dry eye. However, there was no obvious corneal inflammation and conjunctival goblet cell change after SD for 10 days. Meanwhile, lacrimal gland hypertrophy along with abnormal lipid metabolites, secretory proteins and free amino-acid profiles became apparent as the SD duration increased. Furthermore, the ocular surface changes induced by SD for 10 days were largely reversed after 14 days of rest. We conclude that SD compromises lacrimal system function and induces dry eye. These findings will benefit the clinical diagnosis and treatment of sleep-disorder-related ocular surface diseases.


Subject(s)
Dry Eye Syndromes/physiopathology , Sleep Deprivation/physiopathology , Animals , Apoptosis/physiology , Chromatography, Liquid , Conjunctiva/pathology , Mice , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry , Tears/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...