Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 148, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773631

ABSTRACT

BACKGROUND: Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. METHODS: To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. RESULTS: We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1wt as well as of XPO1E571K. Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. CONCLUSIONS: These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.


Subject(s)
Exportin 1 Protein , Hodgkin Disease , Karyopherins , Receptors, Cytoplasmic and Nuclear , Humans , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Animals , Mice , Hodgkin Disease/drug therapy , Hodgkin Disease/pathology , Hodgkin Disease/metabolism , Hodgkin Disease/genetics , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/genetics , HSP110 Heat-Shock Proteins/metabolism , HSP110 Heat-Shock Proteins/genetics , Cell Line, Tumor , Mediastinal Neoplasms/drug therapy , Mediastinal Neoplasms/metabolism , Mediastinal Neoplasms/pathology , Mediastinal Neoplasms/genetics , Xenograft Model Antitumor Assays , Triazoles/pharmacology , Triazoles/therapeutic use , Hydrazines/pharmacology , Hydrazines/therapeutic use , Female , STAT6 Transcription Factor/metabolism , Molecular Targeted Therapy
2.
Mol Oncol ; 17(12): 2546-2564, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36727672

ABSTRACT

Exportin 1 (XPO1) is the main nuclear export receptor that controls the subcellular trafficking and the functions of major regulatory proteins. XPO1 is overexpressed in various cancers and small inhibitors of nuclear export (SINEs) have been developed to inhibit XPO1. In primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin's lymphoma (cHL), the XPO1 gene may be mutated on one nucleotide and encodes the mutant XPO1E571K . To understand the impact of mutation on protein function, we studied the response of PMBL and cHL cells to selinexor, a SINE, and ibrutinib, an inhibitor of Bruton tyrosine kinase. XPO1 mutation renders lymphoma cells more sensitive to selinexor due to a faster degradation of mutant XPO1 compared to the wild-type. We further showed that a mistrafficking of p65 (RELA) and p52 (NFκB2) transcription factors between the nuclear and cytoplasmic compartments accounts for the response toward ibrutinib. XPO1 mutation may be envisaged as a biomarker of the response of PMBL and cHL cells and other B-cell hemopathies to SINEs and drugs that target even indirectly the NFκB signaling pathway.


Subject(s)
Hodgkin Disease , Humans , Cell Line, Tumor , Exportin 1 Protein , Hodgkin Disease/drug therapy , Hodgkin Disease/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Cytoplasm/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/metabolism
3.
Med Sci (Paris) ; 38(10): 795-799, 2022 Oct.
Article in French | MEDLINE | ID: mdl-36219079

ABSTRACT

For therapeutic purposes, the development of new anti-cancer drugs requires their evaluation in terms of activity, cytotoxicity and pharmacokinetics. The candidate drugs are tested in vitro on cell lines and primary cells isolated from patients, and in vivo, often, using xenografts in immuno-compromised mice. In recent years, administrative constraints have become increasingly stringent and the 3R rule (reduce, refine, replace) requires the elaboration of alternative models capable to replace mouse models or at least to limit their use. Among them, xenograft on chick embryo chorioallantoic membrane (CAM assay) seems particularly efficient. It makes it possible to monitor and quantify tumor growth and tumor-associated parameters such as neoangiogenesis, invasion and migration. It allows the screening of drugs effective both on tumor cells and their microenvironment. Finally, the model seems adapted to the development of personalized medicine to which current research in cancerology is tending. In this context, this review focuses on the technique itself and its advantages.


Title: L'embryon de poule - Un modèle préclinique alternatif en cancérologie. Abstract: Le développement de drogues anti-cancéreuses à visée thérapeutique nécessite leur évaluation. Ces drogues candidates sont généralement testées in vitro, sur des lignées cellulaires ou sur des cellules isolées à partir de patients, et, in vivo, dans des modèles de xénogreffe chez la souris immunodéprimée. Depuis quelques années, les contraintes réglementaires (règle des 3R : réduire, raffiner, remplacer) imposent de mettre en place des modèles alternatifs qui se substituent aux modèles murins ou, au moins, en limitent l'utilisation. Parmi les modèles alternatifs proposés, la greffe sur membrane chorio-allantoïdienne d'embryon de poule semble performante. Elle permet de suivre et de quantifier la croissance tumorale et d'autres paramètres associés, comme la néo-angiogenèse, l'invasion et la migration tumorales. Elle permet aussi le criblage de drogues. Ce modèle semble également adapté à la médecine personnalisée en cancérologie. Nous présentons dans cette revue la technique et ses avantages.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Chick Embryo , Chickens , Chorioallantoic Membrane/metabolism , Female , Humans , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Tumor Microenvironment
4.
Cancers (Basel) ; 14(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35454811

ABSTRACT

Hairy cell leukemia (cHCL) patients have, in most cases, a specific clinical and biological presentation with splenomegaly, anemia, leukopenia, neutropenia, monocytopenia and/or thrombocytopenia, identification of hairy cells that express CD103, CD123, CD25, CD11c and identification of the V600E mutation in the B-Raf proto-oncogene (BRAF) in 90% of cases. Monocytopenia is absent in vHCL and SDRPL patients and the abnormal cells do not express CD25 or CD123 and do not present the BRAFV600E mutation. Ten percent of cHCL patients are BRAFWT and the distinction between cHCL and HCL-like disorders including the variant form of HCL (vHCL) and splenic diffuse red pulp lymphoma (SDRPL) can be challenging. We performed deep sequencing in a large cohort of 84 cHCL and 16 HCL-like disorders to improve insights into the pathogenesis of the diseases. BRAF mutations were detected in 76/82 patients of cHCL (93%) and additional mutations were identified in Krüppel-like Factor 2 (KLF2) in 19 patients (23%) or CDKN1B in 6 patients (7.5%). Some KLF2 genetic alterations were localized on the cytidine deaminase (AID) consensus motif, suggesting AID-induced mutations. When analyzing sequential samples, a clonal evolution was identified in half of the cHCL patients (6/12 pts). Among the 16 patients with HCL-like disorders, we observed an enrichment of MAP2K1 mutations in vHCL/SDRPL (3/5 pts) and genes involved in the epigenetic regulation (KDM6A, EZH2, CREBBP, ARID1A) (3/5 pts). Furthermore, MAP2K1 mutations were associated with a bad prognosis and a shorter time to next treatment (TTNT) and progression-free survival (PFS), independently of the HCL classification.

5.
Cancers (Basel) ; 14(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35205670

ABSTRACT

Protein ubiquitylation coordinates crucial cellular events in physiological and pathological conditions. A comparative analysis of the ubiquitin proteome from bortezomib (BTZ)-sensitive and BTZ-resistant mantle cell lymphoma (MCL) revealed an enrichment of the autophagy-lysosome system (ALS) in BTZ-resistant cells. Pharmacological inhibition of autophagy at the level of lysosome-fusion revealed a constitutive activation of proteaphagy and accumulation of proteasome subunits within autophagosomes in different MCL cell lines with acquired or natural resistance to BTZ. Inhibition of the autophagy receptor p62/SQSTM1 upon verteporfin (VTP) treatment disrupted proteaphagosome assembly, reduced co-localization of proteasome subunits with autophagy markers and negatively impacted proteasome activity. Finally, the silencing or pharmacological inhibition of p62 restored the apoptosis threshold at physiological levels in BTZ-resistant cells both in vitro and in vivo. In total, these results demonstrate for the first time a proteolytic switch from the ubiquitin-proteasome system (UPS) to ALS in B-cell lymphoma refractory to proteasome inhibition, pointing out a crucial role for proteaphagy in this phenomenon and paving the way for the design of alternative therapeutic venues in treatment-resistant tumors.

6.
Cancers (Basel) ; 13(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34359648

ABSTRACT

Multiple myeloma (MM) is an incurable plasma cell malignancy with frequent patient relapse due to innate or acquired drug resistance. Cholesterol metabolism is reported to be altered in MM; therefore, we investigated the potential anti-myeloma activity of two cholesterol derivatives: the 5,6 α- and 5,6 ß-epoxycholesterol (EC) isomers. To this end, viability assays were used, and isomers were shown to exhibit important anti-tumor activity in vitro in JJN3 and U266 human myeloma cell lines (HMCLs) and ex vivo in myeloma patients' sorted CD138+ malignant cells. Moreover, we confirmed that 5,6 α-EC and 5,6 ß-EC induced oxiapoptophagy through concomitant oxidative stress and caspase-3-mediated apoptosis and autophagy. Interestingly, in combination treatment a synergistic interaction was observed between 5,6 α-EC and 5,6 ß-EC on myeloma cells. These data highlight a striking anti-tumor activity of 5,6 α-EC and 5,6 ß-EC bioactive molecules against human myeloma cells, paving the way for their potential role in future therapeutic strategies in MM.

7.
Cancers (Basel) ; 13(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067602

ABSTRACT

Multiple myeloma (MM) is a common hematological disease characterized by the accumulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new therapeutic strategies have significantly improved the treatment outcome and patients survival. Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma cells are prone to produce large amounts of immunoglobulins causing the production of intracellular ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance specifically toward proteasome inhibitors.

8.
Appl Immunohistochem Mol Morphol ; 29(1): 56-61, 2021 01.
Article in English | MEDLINE | ID: mdl-32134755

ABSTRACT

Helicobacter pylori infection is strongly associated with primary gastric diseases, such as extranodal mucosa-associated lymphoid tissue (MALT) lymphoma, diffuse large B-cell lymphoma (DLBCL) with histologic evidence of MALT origin, and gastric carcinoma. The cytotoxin-associated gene A (CagA) protein behaves as a bacterial oncoprotein, promoting tumorigenesis via dysregulation of the phosphatidylinositol 3-kinase/AKT pathway (PI3K/AKT). We investigated the molecular mechanisms of PI3K/AKT pathway dysregulation in H. pylori-induced MALT and DLBCL gastric lymphoma. Immunohistochemical assays for CagA, phospho(p)-S473-AKT, PTEN, SHIP, and cyclin A2 proteins were performed on samples from 23 patients with H. pylori-positive MALT lymphoma and 16 patients with H. pylori-positive gastric DLBCL. We showed that CagA localization is correlated with the activation of the AKT pathway in both MALT and DLBCL lymphoma cells. Interestingly, we found a close association between the loss of PTEN, the overexpression of cyclin A2, and the phosphorylation of AKT in gastric MALT and DLBCL tumor cells.


Subject(s)
Cyclin A2/biosynthesis , Gene Expression Regulation, Neoplastic , Helicobacter Infections/metabolism , Helicobacter pylori/metabolism , Lymphoma, B-Cell, Marginal Zone/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , PTEN Phosphohydrolase/deficiency , Signal Transduction , Stomach Neoplasms/metabolism , Up-Regulation , Cyclin A2/genetics , Female , Helicobacter Infections/genetics , Helicobacter Infections/pathology , Humans , Lymphoma, B-Cell, Marginal Zone/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Male , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Stomach Neoplasms/genetics
9.
Cancers (Basel) ; 12(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007990

ABSTRACT

The XPO1 gene encodes exportin 1 (XPO1) that controls the nuclear export of cargo proteins and RNAs. Almost 25% of primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) cases harboured a recurrent XPO1 point mutation (NM_003400, chr2:g61718472C>T) resulting in the E571K substitution within the hydrophobic groove of the protein, the site of cargo binding. We investigated the impact of the XPO1E571K mutation using PMBL/cHL cells having various XPO1 statuses and CRISPR-Cas9-edited cells in which the E571K mutation was either introduced or knocked-out. We first confirmed that the mutation was present in both XPO1 mRNA and protein. We observed that the mutation did not modify the export capacity but rather the subcellular localisation of XPO1 itself. In particular, mutant XPO1 bound to importin ß1 modified the nuclear export/import dynamics of relevant cargoes.

10.
Cells ; 9(11)2020 10 26.
Article in English | MEDLINE | ID: mdl-33114738

ABSTRACT

Multiple myeloma (MM) is a plasma cell neoplasm that remains incurable due to innate or acquired resistance. Although MM cells produce high intracellular levels of reactive oxygen species (ROS), we hypothesised that they could remain sensitive to ROS unbalance. We tested if the inhibition of ROS, on one hand, or the overproduction of ROS, on the other, could (re)sensitise cells to bortezomib (BTZ). Two drugs were used in a panel of MM cell lines with various responses to BTZ: VAS3947 (VAS), an inhibitor of NADPH oxidase and auranofin (AUR), an inhibitor of thioredoxin reductase (TXNRD1), an antioxidant enzyme overexpressed in MM cells. We used several culture models: in suspension, on a fibronectin layer, in coculture with HS-5 mesenchymal cells, and/or in 3-D culture (or spheroids) to study the response of MM primary cells and cell lines. Several MM cell lines were sensitive to VAS but the combination with BTZ showed antagonistic or additive effects at best. By contrast, in all culture systems studied, the combined AUR/BTZ treatment showed synergistic effects on cell lines, including those less sensitive to BTZ and primary cells. MM cell death is due to the activation of apoptosis and autophagy. Modulating the redox balance of MM cells could be an effective therapy for refractory or relapse post-BTZ patients.


Subject(s)
Apoptosis/drug effects , Bortezomib/pharmacology , Drug Resistance, Neoplasm , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Reactive Oxygen Species/metabolism , Tumor Microenvironment/drug effects , Autophagy/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/etiology , Oxidation-Reduction , Signal Transduction/drug effects
11.
Cancers (Basel) ; 12(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545704

ABSTRACT

Mantle cell lymphoma (MCL) is a rare but aggressive B-cell hemopathy characterized by the translocation t(11;14)(q13;q32) that leads to the overexpression of the cell cycle regulatory protein cyclin D1. This translocation is the initial event of the lymphomagenesis, but tumor cells can acquire additional alterations allowing the progression of the disease with a more aggressive phenotype and a tight dependency on microenvironment signaling. To date, the chemotherapeutic-based standard care is largely inefficient and despite the recent advent of different targeted therapies including proteasome inhibitors, immunomodulatory drugs, tyrosine kinase inhibitors, relapses are frequent and are generally related to a dismal prognosis. As a result, MCL remains an incurable disease. In this review, we will present the molecular mechanisms of drug resistance learned from both preclinical and clinical experiences in MCL, detailing the main tumor intrinsic processes and signaling pathways associated to therapeutic drug escape. We will also discuss the possibility to counteract the acquisition of drug refractoriness through the design of more efficient strategies, with an emphasis on the most recent combination approaches.

12.
Adv Exp Med Biol ; 1233: 153-174, 2020.
Article in English | MEDLINE | ID: mdl-32274756

ABSTRACT

Since its introduction in the clinics in early 2000s, the proteasome inhibitor bortezomib (BTZ) significantly improved the prognosis of patients with multiple myeloma (MM) and mantle cell lymphoma (MCL), two of the most challenging B cell malignancies in western countries. However, relapses following BTZ therapy are frequent, while primary resistance to this agent remains a major limitation for further development of its therapeutic potential. In the present chapter, we recapitulate the molecular mechanisms associated with intrinsic and acquired resistance to BTZ learning from MM and MCL experience, including mutations of crucial genes and activation of prosurvival signalling pathways inherent to malignant B cells. We also outline the preclinical and clinical evaluations of some potential druggable targets associated to BTZ resistance, considering the most meaningful findings of the past 10 years. Although our understanding of BTZ resistance is far from being completed, recent discoveries are contributing to develop new approaches to treat relapsed MM and MCL patients.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Lymphoma, Mantle-Cell/drug therapy , Multiple Myeloma/drug therapy , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Humans , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Recurrence, Local , Proteasome Endopeptidase Complex/metabolism
13.
Cell Cycle ; 19(2): 163-178, 2020 01.
Article in English | MEDLINE | ID: mdl-31885322

ABSTRACT

The cell cycle is tightly regulated by cyclins and their catalytic moieties, the cyclin-dependent kinases (CDKs). Cyclin D1, in association with CDK4/6, acts as a mitogenic sensor and integrates extracellular mitogenic signals and cell cycle progression. When deregulated (overexpressed, accumulated, inappropriately located), cyclin D1 becomes an oncogene and is recognized as a driver of solid tumors and hemopathies. Recent studies on the oncogenic roles of cyclin D1 reported non-canonical functions dependent on the partners of cyclin D1 and its location within tumor cells or tissues. Support for these new functions was provided by various mouse models of oncogenesis. Finally, proteomic and transcriptomic data identified complex cyclin D1 networks. This review focuses on these aspects of cyclin D1 pathophysiology, which may be crucial for targeted therapy.Abbreviations: aa, amino acid; AR, androgen receptor; ATM, ataxia telangectasia mutant; ATR, ATM and Rad3-related; CDK, cyclin-dependent kinase; ChREBP, carbohydrate response element binding protein; CIP, CDK-interacting protein; CHK1/2, checkpoint kinase 1/2; CKI, CDK inhibitor; DDR, DNA damage response; DMP1, cyclin D-binding myb-like protein; DSB, double-strand DNA break; DNA-PK, DNA-dependent protein kinase; ER, estrogen receptor; FASN, fatty acid synthase; GSK3ß, glycogen synthase-3ß; HAT, histone acetyltransferase; HDAC, histone deacetylase; HK2, hexokinase 2; HNF4α, and hepatocyte nuclear factor 4α; HR, homologous recombination; IR, ionizing radiation; KIP, kinase inhibitory protein; MCL, mantle cell lymphoma; NHEJ, non-homologous end-joining; PCAF, p300/CREB binding-associated protein; PGC1α, PPARγ co-activator 1α; PEST, proline-glutamic acid-serine-threonine, PK, pyruvate kinase; PPAR, peroxisome proliferator-activated receptor; RB1, retinoblastoma protein; ROS, reactive oxygen species; SRC, steroid receptor coactivator; STAT, signal transducer and activator of transcription; TGFß, transforming growth factor ß; UPS, ubiquitin-proteasome system; USP22, ubiquitin-specific peptidase 22; XPO1 (or CRM1) exportin 1.


Subject(s)
Cyclin D1/metabolism , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Nucleus/metabolism , Cyclin D1/chemistry , DNA Damage , Humans , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/pathology
14.
Oncotarget ; 9(48): 28866-28876, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29989027

ABSTRACT

Classical hairy cell leukemia (HCL-c) is a rare lymphoid neoplasm. BRAFV600E mutation, detected in more than 80% of the cases, is described as a driver mutation, but additional genetic abnormalities appear to be necessary for the disease progression. For cases of HCL-c harboring a wild-type BRAF gene, the differential diagnosis of the variant form of HCL (HCL-v) or splenic diffuse red pulp lymphoma (SDRPL) is complex. We selected a panel of 21 relevant genes based on a literature review of whole exome sequencing studies (BRAF, MAP2K1, DUSP2, MAPK15, ARID1A, ARID1B, EZH2, KDM6A, CREBBP, TP53, CDKN1B, XPO1, KLF2, CXCR4, NOTH1, NOTCH2, MYD88, ANXA1, U2AF1, BCOR, and ABCA8). We analyzed 20 HCL-c and 4 HCL-v patients. The analysis of diagnostic samples mutations in BRAF (n = 18), KLF2 (n = 4), MAP2K1 (n = 3), KDM6A (n = 2), CDKN1B (n = 2), ARID1A (n = 2), CREBBP (n = 2) NOTCH1 (n = 1) and ARID1B (n = 1). BRAFV600E was found in 90% (18/20) of HCL-c patients. In HCL-c patients with BRAFV600E , other mutations were found in 33% (6/18) of cases. All 4 HCL-v patients had mutations in epigenetic regulatory genes: KDM6A (n = 2), CREBBP (n = 1) or ARID1A (n = 1). The analysis of sequential samples (at diagnosis and relapse) from 5 patients (2 HCL-c and 3 HCL-v), showed the presence of 2 new subclonal mutations (BCORE1430X and XPO1E571K ) in one patient and variations of the mutated allele frequency in 2 other cases. In the HCL-v disease, we described new mutations targeting KDM6A that encode a lysine demethylase protein. This opens new perspectives for personalized medicine for this group of patients.

15.
Neurosci Lett ; 683: 43-47, 2018 09 14.
Article in English | MEDLINE | ID: mdl-29936267

ABSTRACT

There is substantial evidence that loss of vestibular function impairs spatial learning and memory related to hippocampal (HPC) function, as well as increasing evidence that striatal (Str) plasticity is also implicated. Since the N-methyl-d-aspartate (NMDA) subtype of glutamate receptor is considered essential to spatial memory, previous studies have investigated whether the expression of HPC NMDA receptors changes following vestibular loss; however, the results have been contradictory. Here we used a novel flow cytometric method to quantify the number of neurons expressing NMDA receptors in the HPC and Str following bilateral vestibular loss (BVL) in rats. At 7 and 30 days post-op., there was a significant increase in the number of HPC neurons expressing NMDA receptors in the BVL animals, compared to sham controls (P ≤ 0.004 and P ≤ 0.0001, respectively). By contrast, in the Str, at 7 days there was a significant reduction in the number of neurons expressing NMDA receptors in the BVL group (P ≤ 0.05); however, this difference had disappeared by 30 days post-op. These results suggest that BVL causes differential changes in the number of neurons expressing NMDA receptors in the HPC and Str, which may be related to its long-term impairment of spatial memory.


Subject(s)
Corpus Striatum/metabolism , Flow Cytometry/methods , Hippocampus/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/biosynthesis , Vestibule, Labyrinth/metabolism , Animals , Corpus Striatum/cytology , Ear, Inner/cytology , Ear, Inner/metabolism , Ear, Inner/surgery , Gene Expression , Hippocampus/cytology , Male , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Vestibule, Labyrinth/cytology , Vestibule, Labyrinth/surgery
16.
Cell Signal ; 46: 76-82, 2018 06.
Article in English | MEDLINE | ID: mdl-29501729

ABSTRACT

Primary mediastinal B-cell lymphoma (PMBL) is a distinct B-cell lymphoma subtype with unique clinicopathological and molecular features. PMBL cells are characterised by several genetic abnormalities that conduct to the constitutive activation of the Janus kinase 2/signal transducer and activator of transcription 6 (JAK2/STAT6) signalling pathway. Among recurrent genetic changes in PMBL, we previously reported that the XPO1 gene encoding exportin 1 that controls the nuclear export of cargo proteins and RNAs, is mutated (p.E571K) in about 25% of PMBL cases. We therefore hypothesized that STAT6 could be a cargo of XPO1 and that STAT6 cytoplasm/nucleus shuttle could be altered in a subset of PMBL cells. Using immunocytochemistry techniques as well as the proximity ligation assay, we showed that STAT6 bound XPO1 in PBML cell lines and in HEK-293 cells genetically engineered to produce STAT6. Moreover, XPO1-mediated export of STAT6 occurs in cells expressing either a wild-type or the E571K mutated XPO1 protein.


Subject(s)
B-Lymphocytes , Cell Nucleus/metabolism , Karyopherins/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , Mediastinal Neoplasms/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , STAT6 Transcription Factor/metabolism , Active Transport, Cell Nucleus , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Line, Tumor , Gene Expression Regulation , HEK293 Cells , Humans , Interleukin-4/metabolism , Janus Kinase 2/metabolism , Karyopherins/genetics , Mutation , Receptors, Cytoplasmic and Nuclear/genetics , STAT6 Transcription Factor/genetics , Exportin 1 Protein
18.
Sci Rep ; 7(1): 13946, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29066743

ABSTRACT

Mantle cell lymphoma (MCL) is a hematologic neoplasm characterised by the t(11;14)(q13;q32) translocation leading to aberrant cyclin D1 expression. The cell functions of cyclin D1 depend on its partners and/or subcellular distribution, resulting in different oncogenic properties. We observed the accumulation of cyclin D1 in the cytoplasm of a subset of MCL cell lines and primary cells. In primary cells, this cytoplasmic distribution was correlated with a more frequent blastoid phenotype. We performed immunoprecipitation assays and mass spectrometry on enriched cytosolic fractions from two cell lines. The cyclin D1 interactome was found to include several factors involved in adhesion, migration and invasion. We found that the accumulation of cyclin D1 in the cytoplasm was associated with higher levels of migration and invasiveness. We also showed that MCL cells with high cytoplasmic levels of cyclin D1 engrafted more rapidly into the bone marrow, spleen, and brain in immunodeficient mice. Both migration and invasion processes, both in vivo and in vitro, were counteracted by the exportin 1 inhibitor KPT-330, which retains cyclin D1 in the nucleus. Our data reveal a role of cytoplasmic cyclin D1 in the control of MCL cell migration and invasion, and as a true operator of MCL pathogenesis.


Subject(s)
Cell Movement , Cyclin D1/metabolism , Cytoplasm/metabolism , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Active Transport, Cell Nucleus , Adult , Aged , Aged, 80 and over , Animals , Cell Nucleus/metabolism , Cell Transformation, Neoplastic , Cytosol/metabolism , Female , Humans , Male , Mice , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis , Proteomics
19.
BMC Cancer ; 17(1): 538, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28797244

ABSTRACT

BACKGROUND: Mantle cell lymphoma (MCL) is a B-cell hemopathy characterized by the t(11;14) translocation and the aberrant overexpression of cyclin D1. This results in an unrestrained cell proliferation. Other genetic alterations are common in MCL cells such as SOX11 expression, mutations of ATM and/or TP53 genes, activation of the NF-κB signaling pathway and NOTCH receptors. These alterations lead to the deregulation of the apoptotic machinery and resistance to drugs. We observed that among a panel of MCL cell lines, REC1 cells were resistant towards genotoxic stress. We studied the molecular basis of this resistance. METHODS: We analyzed the cell response regarding apoptosis, senescence, cell cycle arrest, DNA damage response and finally the 26S proteasome activity following a genotoxic treatment that causes double strand DNA breaks. RESULTS: MCL cell lines displayed various sensitivity/resistance towards genotoxic stress and, in particular, REC1 cells did not enter apoptosis or senescence after an etoposide treatment. Moreover, the G2/M cell cycle checkpoint was deficient in REC1 cells. We observed that three main actors of apoptosis, senescence and cell cycle regulation (cyclin D1, MCL1 and CDC25A) failed to be degraded by the proteasome machinery in REC1 cells. We ruled out a default of the ßTrCP E3-ubiquitine ligase but detected a lowered 26S proteasome activity in REC1 cells compared to other cell lines. CONCLUSION: The resistance of MCL cells to genotoxic stress correlates with a low 26S proteasome activity. This could represent a relevant biomarker for a subtype of MCL patients with a poor response to therapies and a high risk of relapse.


Subject(s)
DNA Breaks, Double-Stranded , Drug Resistance, Neoplasm , Etoposide/therapeutic use , Lymphoma, Mantle-Cell/metabolism , Proteasome Endopeptidase Complex/genetics , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis , Cell Line, Tumor , DNA Repair , DNA, Neoplasm/metabolism , Etoposide/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/enzymology , Lymphoma, Mantle-Cell/genetics , Proteasome Endopeptidase Complex/metabolism
20.
PLoS One ; 12(5): e0177125, 2017.
Article in English | MEDLINE | ID: mdl-28472196

ABSTRACT

PURPOSE: Multiple myeloma (MM) is a haematological malignancy that affects plasma cells in the bone marrow. Recently, [18F]fludarabine has been introduced as an innovative PET radiotracer for imaging lymphoma. It demonstrated a great potential for accurate imaging of lymphoproliferative disorders. With the goal to question the usefulness of [18F]fludarabine-PET in other haematological diseases, an in vivo MM model was investigated. METHODS: RPMI8226-GFP-Luc MM cells expressing the green fluorescent protein (GFP) as well as the luciferase reporter (Luc) were derived from the parental RPMI8226 cells. They were injected subcutaneously into the flank of nude mice. Myeloma tumour growth was followed using bioluminescence-based imaging (BLI) and characterised by immunohistochemistry (IHC). The tumour specificity of [18F]fludarabine was evaluated and compared to [18F]FDG. RESULTS: The tumoural uptake of [18F]FDG was greater than that of [18F]fludarabine. However, the quantitative data extracted from IHC stainings were in better agreement with [18F]fludarabine, when compared to [18F]FDG. The relationship between the tumoural uptake of [18F]-labelled tracers and the BLI quantitative data was also in favour of [18F]fludarabine. CONCLUSION: Our results suggest that [18F]fludarabine-PET might represent an alternative and perhaps more specific modality for MM imaging when compared to [18F]FDG. Nevertheless, more investigations are required to extend this conclusion to humans.


Subject(s)
Fluorine Radioisotopes/administration & dosage , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/drug therapy , Myeloablative Agonists/therapeutic use , Positron-Emission Tomography/methods , Vidarabine/analogs & derivatives , Animals , Heterografts , Mice , Mice, Nude , Vidarabine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...