Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
J Transl Med ; 20(1): 231, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581584

ABSTRACT

BACKGROUND: According to international guidelines, Human Papillomavirus (HPV) DNA tests represent a valid alternative to Pap Test for primary cervical cancer screening, provided that they guarantee balanced clinical sensitivity and specificity for cervical intraepithelial neoplasia grade 2 or more (CIN2+) lesions. The study aimed to assess whether HPV Selfy (Ulisse BioMed - Trieste, Italy), a full-genotyping HPV DNA test that detects and differentiates 14 high-risk HPV (HR-HPV) types, meets the criteria for primary cervical cancer screening described in the international guidelines, on clinician-collected as well as on self-collected samples. METHODS: For each participant woman, consecutively referring to Azienda Sanitaria Universitaria Giuliano Isontina (Trieste, Italy) and CRO-National Cancer Institute (Aviano, Italy) for the cervical cancer screening program, the following samples were tested: (a) a clinician-collected cervical specimen, analyzed with the reference test (Hybrid Capture®2 test, HC2) and HPV Selfy; and (b) a self-collected vaginal sample, analyzed with HPV Selfy. Enrolled women were also asked to fulfill a questionnaire about self-sampling acceptability. As required by guidelines, a non-inferiority test was conducted to compare the clinical performance of the test under evaluation with its reference test. RESULTS: HPV Selfy clinical sensitivity and specificity resulted non-inferior to those of HC2. By analysis of a total of 889 cervical liquid-based cytology samples from a screening population, of which 98 were from women with CIN2+, HPV Selfy showed relative sensitivity and specificity for CIN2+ of 0.98 and 1.00 respectively (non-inferiority score test: P = 0.01747 and P = 0.00414, respectively); the test reached adequate intra- and inter-laboratory reproducibility. Moreover, we demonstrated that the performance of HPV Selfy on self-collected vaginal samples was non-inferior to the performance obtained on clinician-collected cervical specimen (0.92 relative sensitivity and 0.97 relative specificity). Finally, through HPV Selfy genotyping, we were able to describe HPV types prevalence in the study population. CONCLUSIONS: HPV Selfy fulfills all the requirements of the international Meijer's guidelines and has been clinically validated for primary cervical cancer screening purposes. Moreover, HPV Selfy has also been validated for self-sampling according to VALHUDES guidelines. Therefore, at date, HPV Selfy is the only full-genotyping test validated both for screening purposes and for self-sampling. Trial registration ASUGI Trieste n. 16008/2018; CRO Aviano n.17149/2018.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Early Detection of Cancer/methods , Female , Genotype , Humans , Mass Screening , Papillomaviridae/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/diagnosis , Reproducibility of Results , Sensitivity and Specificity , Uterine Cervical Neoplasms/diagnosis
3.
Int J Mol Sci ; 21(19)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036159

ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) may be a valuable weapon against multi-drug resistant pathogens, combining potent antimicrobial activity with low cytotoxicity. We have identified novel PrAMPs from five cetacean species (cePrAMPs), and characterized their potency, mechanism of action and in vitro cytotoxicity. Despite the homology between the N-terminal of cePrAMPs and the bovine PrAMP Bac7, some differences emerged in their sequence, activity spectrum and mode of action. CePrAMPs with the highest similarity with the Bac7(1-35) fragment inhibited bacterial protein synthesis without membrane permeabilization, while a second subgroup of cePrAMPs was more membrane-active but less efficient at inhibiting bacterial translation. Such differences may be ascribable to differences in presence and positioning of Trp residues and of a conserved motif seemingly required for translation inhibition. Unlike Bac7(1-35), which requires the peptide transporter SbmA for its uptake, the activity of cePrAMPs was mostly independent of SbmA, regardless of their mechanism of action. Two peptides displayed a promisingly broad spectrum of activity, with minimal inhibiting concentration MIC ≤ 4 µM against several bacteria of the ESKAPE group, including Pseudomonas aeruginosa and Enterococcus faecium. Our approach has led us to discover several new peptides; correlating their sequences and mechanism of action will provide useful insights for designing optimized future peptide-based antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cetacea/metabolism , Pore Forming Cytotoxic Proteins/genetics , Animals , Antimicrobial Cationic Peptides , Bacteria/drug effects , Candida albicans/drug effects , Cattle/metabolism , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/metabolism , Pore Forming Cytotoxic Proteins/pharmacology , Sequence Alignment , Sequence Analysis, Protein , Cathelicidins
4.
J Med Chem ; 63(17): 9590-9602, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787108

ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) are promising lead compounds for developing new antimicrobials; however, their narrow spectrum of action is limiting. PrAMPs kill bacteria binding to their ribosomes and inhibiting protein synthesis. In this study, 133 derivatives of the PrAMP Bac7(1-16) were synthesized to identify the crucial residues for ribosome inactivation and antimicrobial activity. Then, five new Bac7(1-16) derivatives were conceived and characterized by antibacterial and membrane permeabilization assays, X-ray crystallography, and molecular dynamics simulations. Some derivatives displayed broad spectrum activity, encompassing Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Staphylococcus aureus. Two peptides out of five acquired a weak membrane-perturbing activity while maintaining the ability to inhibit protein synthesis. These derivatives became independent of the SbmA transporter, commonly used by native PrAMPs, suggesting that they obtained a novel route to enter bacterial cells. PrAMP-derived compounds could become new-generation antimicrobials to combat antibiotic-resistant pathogens.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Proline/chemistry , Antimicrobial Cationic Peptides/metabolism , Microbial Sensitivity Tests , Permeability , Ribosomes/drug effects , Ribosomes/metabolism
5.
ChemMedChem ; 14(24): 2025-2033, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31692278

ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) are promising agents to combat multi-drug resistant pathogens due to a high antimicrobial activity, yet low cytotoxicity. A library of derivatives of the PrAMP Bac5(1-17) was synthesized and screened to identify which residues are relevant for its activity. In this way, we discovered that two central motifs -PIRXP- cannot be modified, while residues at N- and C- termini tolerated some variations. We found five Bac5(1-17) derivatives bearing 1-5 substitutions, with an increased number of arginine and/or tryptophan residues, exhibiting improved antimicrobial activity and broader spectrum of activity while retaining low cytotoxicity toward eukaryotic cells. Transcription/translation and bacterial membrane permeabilization assays showed that these new derivatives still retained the ability to strongly inhibit bacterial protein synthesis, but also acquired permeabilizing activity to different degrees. These new Bac5(1-17) derivatives therefore show a dual mode of action which could hinder the selection of bacterial resistance against these molecules.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Peptides/pharmacology , Proline/pharmacology , Anti-Bacterial Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Peptides/chemistry , Proline/chemistry , Structure-Activity Relationship
6.
JCI Insight ; 52019 06 18.
Article in English | MEDLINE | ID: mdl-31211694

ABSTRACT

Non-integrative AAV-mediated gene therapy in the liver is effective in adult patients, but faces limitations in pediatric settings due to episomal DNA loss during hepatocyte proliferation. Gene targeting is a promising approach by permanently modifying the genome. We previously rescued neonatal lethality in Crigler-Najjar mice by inserting a promoterless human uridine glucuronosyl transferase A1 (UGT1A1) cDNA in exon 14 of the albumin gene, without the use of nucleases. To increase recombination rate and therapeutic efficacy, here we used CRISPR/SaCas9. Neonatal mice were transduced with two AAVs: one expressing the SaCas9 and sgRNA, and one containing a promoterless cDNA flanked by albumin homology regions. Targeting efficiency increased ~26-fold with an eGFP reporter cDNA, reaching up to 24% of eGFP-positive hepatocytes. Next, we fully corrected the diseased phenotype of Crigler-Najjar mice by targeting the hUGT1A1 cDNA. Treated mice had normal plasma bilirubin up to 10 months after administration, hUGT1A1 protein levels were ~6-fold higher than in WT liver, with a 90-fold increase in recombination rate. Liver histology, inflammatory markers, and plasma albumin were normal in treated mice, with no off-targets in predicted sites. Thus, the improved efficacy and reassuring safety profile support the potential application of the proposed approach to other liver diseases.


Subject(s)
Gene Targeting/methods , Genetic Therapy/methods , Glucuronosyltransferase/genetics , Liver/metabolism , Metabolic Diseases/genetics , Metabolic Diseases/therapy , Animals , Animals, Newborn , Bilirubin , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Complementary , Disease Models, Animal , Female , Gene Transfer Techniques , Genetic Vectors , Glucuronosyltransferase/metabolism , HEK293 Cells , Hepatocytes/metabolism , Humans , Liver/pathology , Male , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Mice , Mice, Knockout , NIH 3T3 Cells , Serum Albumin , Therapeutic Uses
7.
ChemMedChem ; 14(3): 343-348, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30615305

ABSTRACT

The spread of antibiotic-resistant pathogens has boosted the search for new antimicrobial drugs. Proline-rich antimicrobial peptides are promising lead compounds for the development of next-generation antibiotics, given their very low cytotoxicity and their good antimicrobial activity targeting the bacterial ribosome. Bac5(1-25) is an N-terminal fragment of the bovine proline-rich antimicrobial peptide Bac5, whose mode of action has been recently described. In this work we tested a number of Bac5(1-25) fragments, and we characterized their antimicrobial activity against Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica, and Pseudomonas aeruginosa. We evaluated their cytotoxicity toward human cells and their efficacy in inhibiting bacterial protein synthesis. This allowed us to identify some shorter fragments of Bac5(1-25) with a good balance between antibacterial efficacy, protein synthesis inhibition, and ease/cost-effectiveness of synthesis, suitable as lead compounds to develop new antibacterials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/antagonists & inhibitors , Proline/pharmacology , Protein Synthesis Inhibitors/pharmacology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Bacterial Proteins/biosynthesis , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Escherichia coli/metabolism , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests , Proline/chemical synthesis , Proline/chemistry , Protein Synthesis Inhibitors/chemical synthesis , Protein Synthesis Inhibitors/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Salmonella enterica/drug effects , Salmonella enterica/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...