Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Med Eng Phys ; 127: 104162, 2024 05.
Article in English | MEDLINE | ID: mdl-38692762

ABSTRACT

OBJECTIVE: Early detection of cardiovascular diseases is based on accurate quantification of the left ventricle (LV) function parameters. In this paper, we propose a fully automatic framework for LV volume and mass quantification from 2D-cine MR images already segmented using U-Net. METHODS: The general framework consists of three main steps: Data preparation including automatic LV localization using a convolution neural network (CNN) and application of morphological operations to exclude papillary muscles from the LV cavity. The second step consists in automatically extracting the LV contours using U-Net architecture. Finally, by integrating temporal information which is manifested by a spatial motion of myocytes as a third dimension, we calculated LV volume, LV ejection fraction (LVEF) and left ventricle mass (LVM). Based on these parameters, we detected and quantified cardiac contraction abnormalities using Python software. RESULTS: CNN was trained with 35 patients and tested on 15 patients from the ACDC database with an accuracy of 99,15 %. U-Net architecture was trained using ACDC database and evaluated using local dataset with a Dice similarity coefficient (DSC) of 99,78 % and a Hausdorff Distance (HD) of 4.468 mm (p < 0,001). Quantification results showed a strong correlation with physiological measures with a Pearson correlation coefficient (PCC) of 0,991 for LV volume, 0.962 for LVEF, 0.98 for stroke volume (SV) and 0.923 for LVM after pillars' elimination. Clinically, our method allows regional and accurate identification of pathological myocardial segments and can serve as a diagnostic aid tool of cardiac contraction abnormalities. CONCLUSION: Experimental results prove the usefulness of the proposed method for LV volume and function quantification and verify its potential clinical applicability.


Subject(s)
Automation , Heart Ventricles , Image Processing, Computer-Assisted , Magnetic Resonance Imaging, Cine , Papillary Muscles , Humans , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Papillary Muscles/diagnostic imaging , Papillary Muscles/physiology , Image Processing, Computer-Assisted/methods , Organ Size , Male , Middle Aged , Neural Networks, Computer , Female , Stroke Volume
2.
Entropy (Basel) ; 25(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36981418

ABSTRACT

In this paper, we propose an innovative approach to improve the performance of an Automatic Fingerprint Identification System (AFIS). The method is based on the design of a Possibilistic Fingerprint Quality Assessment (PFQA) filter where ground truths of fingerprint images of effective and ineffective quality are built by learning. The first approach, QS_I, is based on the AFIS decision for the image without considering its paired image to decide its effectiveness or ineffectiveness. The second approach, QS_PI, is based on the AFIS decision when considering the pair (effective image, ineffective image). The two ground truths (effective/ineffective) are used to design the PFQA filter. PFQA discards the images for which the AFIS does not generate a correct decision. The proposed intervention does not affect how the AFIS works but ensures a selection of the input images, recognizing the most suitable ones to reach the AFIS's highest recognition rate (RR). The performance of PFQA is evaluated on two experimental databases using two conventional AFIS, and a comparison is made with four current fingerprint image quality assessment (IQA) methods. The results show that an AFIS using PFQA can improve its RR by roughly 10% over an AFIS not using an IQA method. However, compared to other fingerprint IQA methods using the same AFIS, the RR improvement is more modest, in a 5-6% range.

3.
Pol J Pathol ; 73(2): 134-158, 2022.
Article in English | MEDLINE | ID: mdl-36172748

ABSTRACT

INTRODUCTION: The complexity of histopathological images remains a challenging issue in cancer diagnosis. A pathologist analyses immunohistochemical images to detect a colour-based stain, which is brown for positive nuclei with different intensities and blue for negative nuclei. Several issues emerge during the eyeballing tissue slide analysis, such as colour variations caused by stain inhomogeneity, non-uniform illumination, irregular cell shapes, and overlapping cell nuclei. To overcome those problems, an automated computer-aided diagnosis system is proposed to segment and quantify digestive neuroendocrine tumours. MATERIAL AND METHODS: We present a novel pre-processing approach based on colour space assessment. A criterion called pertinence degree is introduced to select the appropriate colour channel, followed by contrast enhancement. Subsequently, the adaptive local threshold technique that uses the modified Laplacian filter is applied to minimize the implementation complexity, highlight edges, and emphasize intensity variation between cells across the slide. Finally, the improved watershed algorithm based on the concave vertex graph is applied for cell separation. RESULTS: The performance of the algorithms for nucleus segmentation is evaluated according to both the object-level and pixel-level criteria. Our approach increases segmentation accuracy, with the F1-score equal to 0.986. There is significant agreement between the applied approach and the expert's ground truth segmentation. CONCLUSIONS: The proposed method outperformed the state-of-the-art techniques based on recall, precision, the F1-score, and the Dice coefficient.


Subject(s)
Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/pathology , Color , Algorithms , Neoplasm Grading , Cell Nucleus/pathology , Image Processing, Computer-Assisted/methods
4.
Comput Biol Med ; 150: 106067, 2022 11.
Article in English | MEDLINE | ID: mdl-36150251

ABSTRACT

BACKGROUND AND OBJECTIVE: Detection of the Optic Disc (OD) in retinal fundus image is crucial in identifying diverse abnormal conditions in the retina such as diabetic retinopathy. Previous systems are oriented to the OD detection and segmentation. Most research failed to locate the OD in the case when the image does not have a criterion appearance. The objective of the proposed work is to precisely define a new and robust OD segmentation in color retinal fundus images. METHODS: The proposed algorithm is composed of two stages: OD localization and segmentation. The first phase consists in the OD localization through: 1) a preprocessing step; 2) vessel extraction and elimination, and 3) a geometric analysis allowing to decide the OD location. For the second phase, a set of is computed in order to produce various candidates. A combination of these candidates accurately forms a completed contour of the OD. RESULTS: The proposed method is evaluated using 10 publicly available databases as well as a local database. Accuracy rates in the RimOne and IDRID databases are 98.06% and 99.71%, respectively, and 100% for the Chase, Drive, HRF, Drishti, Drions, Bin Rushed, Magrabia, Messidor and LocalDB databases with an overall success rate of 99.80% and specificity rates of 99.44%, 99.64%, 99.66%, 99.66%, 99.70%, 99.87%, 99.72%, 99.83% and 99.82% for the Rim One, Drions, IDRID, Drishti, HRF, Bin Rushed, Magrabia, Messidor and proprietary databases. CONCLUSION: The main advantage of the proposed approach is the robustness and the excellent performances even with critical cases of retinal images. The proposed method achieves the state-of-the-art performances with regards to the OD detection and segmentation. It is also of a great interest for clinical usage without the expert intervention to treat each image.


Subject(s)
Diabetic Retinopathy , Optic Disk , Humans , Optic Disk/diagnostic imaging , Fundus Oculi , Retina/diagnostic imaging , Algorithms , Diabetic Retinopathy/diagnostic imaging
5.
J Digit Imaging ; 35(6): 1560-1575, 2022 12.
Article in English | MEDLINE | ID: mdl-35915367

ABSTRACT

In this paper, we propose a new collaborative process that aims to detect macrocalcifications from mammographic images while minimizing false negative detections. This process is made up of three main phases: suspicious area detection, candidate object identification, and collaborative classification. The main concept is to operate on the entire image divided into homogenous regions called superpixels which are used to identify both suspicious areas and candidate objects. The collaborative classification phase consists in making the initial results of different microcalcification detectors collaborate in order to produce a new common decision and reduce their initial disagreements. The detectors share the information about their detected objects and associated labels in order to refine their initial decisions based on those of the other collaborators. This refinement consists of iteratively updating the candidate object labels of each detector following local and contextual analyses based on prior knowledge about the links between super pixels and macrocalcifications. This process iteratively reduces the disagreement between different detectors and estimates local reliability terms for each super pixel. The final result is obtained by a conjunctive combination of the new detector decisions reached by the collaborative process. The proposed approach is evaluated on the publicly available INBreast dataset. Experimental results show the benefits gained in terms of improving microcalcification detection performances compared to existing detectors as well as ordinary fusion operators.


Subject(s)
Breast Diseases , Calcinosis , Humans , Reproducibility of Results , Breast Diseases/diagnostic imaging , Calcinosis/diagnostic imaging , Mammography/methods
6.
Med Biol Eng Comput ; 59(9): 1795-1814, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34304371

ABSTRACT

Microcalcifications (MCs) are considered as the first indicator of breast cancer development. Their morphology, in terms of shape and size, is considered as the most important criterion that determines their malignity degrees. Therefore, the accurate delineation of MC is a cornerstone step in their automatic diagnosis process. In this paper, we propose a new conditional region growing (CRG) approach with the ability of finding the accurate MC boundaries starting from selected seed points. The starting seed points are determined based on regional maxima detection and superpixel analysis. The region growing step is controlled by a set of criteria that are adapted to MC detection in terms of contrast and shape variation. These criteria are derived from prior knowledge to characterize MCs and can be divided into two categories. The first one concerns the neighbourhood searching size. The second one deals with the analysis of gradient information and shape evolution within the growing process. In order to prove the effectiveness and the reliability in terms of MC detection and delineation, several experiments have been carried out on MCs of various types, with both qualitative and quantitative analysis. The comparison of the proposed approach with state-of-the art proves the importance of the used criteria in the context of MC delineation, towards a better management of breast cancer. Graphical Abstract Flowchart of the proposed approach.


Subject(s)
Breast Neoplasms , Calcinosis , Algorithms , Breast Neoplasms/diagnostic imaging , Calcinosis/diagnostic imaging , Female , Humans , Mammography , Reproducibility of Results
7.
Entropy (Basel) ; 23(1)2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33401583

ABSTRACT

Uncertainty is at the heart of decision-making processes in most real-world applications. Uncertainty can be broadly categorized into two types: aleatory and epistemic. Aleatory uncertainty describes the variability in the physical system where sensors provide information (hard) of a probabilistic type. Epistemic uncertainty appears when the information is incomplete or vague such as judgments or human expert appreciations in linguistic form. Linguistic information (soft) typically introduces a possibilistic type of uncertainty. This paper is concerned with the problem of classification where the available information, concerning the observed features, may be of a probabilistic nature for some features, and of a possibilistic nature for some others. In this configuration, most encountered studies transform one of the two information types into the other form, and then apply either classical Bayesian-based or possibilistic-based decision-making criteria. In this paper, a new hybrid decision-making scheme is proposed for classification when hard and soft information sources are present. A new Possibilistic Maximum Likelihood (PML) criterion is introduced to improve classification rates compared to a classical approach using only information from hard sources. The proposed PML allows to jointly exploit both probabilistic and possibilistic sources within the same probabilistic decision-making framework, without imposing to convert the possibilistic sources into probabilistic ones, and vice versa.

8.
Comput Methods Programs Biomed ; 164: 131-142, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30195421

ABSTRACT

BACKGROUND AND OBJECTIVE: Accurate mass segmentation in mammographic images is a critical requirement for computer-aided diagnosis systems since it allows accurate feature extraction and thus improves classification precision. METHODS: In this paper, a novel automatic breast mass segmentation approach is presented. This approach consists of mainly three stages: contour initialization applied to a given region of interest; construction of fuzzy contours and estimation of fuzzy membership maps of different classes in the considered image; integration of these maps in the Chan-Vese model to get a fuzzy-energy based model that is used for final delineation of mass. RESULTS: The proposed approach is evaluated using mass regions of interest extracted from the mini-MIAS database. The experimental results show that the proposed method achieves an average true positive rate of 91.12% with a precision of 88.08%. CONCLUSIONS: The achieved results show high accuracy in breast mass segmentation when compared to manually annotated ground truth and to other methods from the literature.


Subject(s)
Breast Neoplasms/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Mammography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Databases, Factual/statistics & numerical data , Diagnosis, Computer-Assisted/statistics & numerical data , Female , Fuzzy Logic , Humans , Mammography/statistics & numerical data , Radiographic Image Interpretation, Computer-Assisted/statistics & numerical data
9.
IEEE Trans Image Process ; 25(8): 3533-45, 2016 08.
Article in English | MEDLINE | ID: mdl-27305673

ABSTRACT

This paper proposes an approach referred as: iterative refinement of possibility distributions by learning (IRPDL) for pixel-based image classification. The IRPDL approach is based on the use of possibilistic reasoning concepts exploiting expert knowledge sources as well as ground possibilistic seeds learning. The set of seeds is constructed by incrementally updating and refining the possibility distributions. Synthetic images as well as real images from the RIDER Breast MRI database are being used to evaluate the IRPDL performance. Its performance is compared with three relevant reference methods: region growing, semi-supervised fuzzy pattern matching, and Markov random fields. The IRDPL performance (in terms of recognition rate, 87.3%) is close to the Markovian method (88.8%) that is considered to be the reference in pixel-based image classification. IRPDL outperforms the other two methods, respectively, at the recognition rates of 83.9% and 84.7%. In addition, the proposed IRPDL requires fewer parameters for the mathematical representation and presents a reduced computational complexity.

10.
IEEE Trans Inf Technol Biomed ; 13(2): 174-83, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19272860

ABSTRACT

Venous thrombosis (VT) volume assessment, by verifying its risk of progression when anticoagulant or thrombolytic therapies are prescribed, is often necessary to screen life-threatening complications. Commonly, VT volume estimation is done by manual delineation of few contours in the ultrasound (US) image sequence, assuming that the VT has a regular shape and constant radius, thus producing significant errors. This paper presents and evaluates a comprehensive functional approach based on the combination of robust anisotropic diffusion and deformable contours to calculate VT volume in a more accurate manner when applied to freehand 2-D US image sequences. Robust anisotropic filtering reduces image speckle noise without generating incoherent edge discontinuities. Prior knowledge of the VT shape allows initializing the deformable contour, which is then guided by the noise-filtering outcome. Segmented contours are subsequently used to calculate VT volume. The proposed approach is integrated into a system prototype compatible with existing clinical US machines that additionally tracks the acquired images 3-D position and provides a dense Delaunay triangulation required for volume calculation. A predefined robust anisotropic diffusion and deformable contour parameter set enhances the system usability. Experimental results pertinence is assessed by comparison with manual and tetrahedron-based volume computations, using images acquired by two medical experts of eight plastic phantoms and eight in vitro VTs, whose independently measured volume is the reference ground truth. Results show a mean difference between 16 and 35 mm(3) for volumes that vary from 655 to 2826 mm(3). Two in vivo VT volumes are also calculated to illustrate how this approach could be applied in clinical conditions when the real value is unknown. Comparative results for the two experts differ from 1.2% to 10.08% of the smallest estimated value when the image acquisition cadences are similar.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Venous Thrombosis/diagnostic imaging , Algorithms , Anisotropy , Humans , Phantoms, Imaging , Ultrasonography
11.
IEEE Trans Inf Technol Biomed ; 7(4): 256-62, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15000352

ABSTRACT

The purpose of this paper is to present an intelligent atlas of indexed endoscopic lesions that could be used in computer-assisted diagnosis as reference data. The development of such a system requires a mix of medical and engineering skills for analyzing and reproducing the cognitive processes that underlie the medical decision-making process. The analysis of both endoscopists experience and endoscopic terminologies developed by professional associations shows that diagnostic reasoning in digestive endoscopy uses a scene-object approach. The objects correspond to the endoscopic findings and the medical context of examination and the scene to the endoscopic diagnosis. According to expert assessment, the classes of endoscopic findings and diagnoses, their primitive characteristics (or indices), and their relationships have been listed. Each class describes an endoscopic finding or diagnosis in an intensive way. The retrieval method is based on a similarity metric that estimates the membership value of the case under investigation and the prototype of the class. A simulation test with randomized objects demonstrates a good classification of endoscopic findings. The correct class is the unique response in 68% of the tested objects, the first of multiple responses in 28%. Four descriptors are shown to be of major importance in the classification algorithm: anatomic location, shape, color, and relief. At the present time, the application database contains approximately 150 endoscopic images and is accessible via Internet. Experiments are in progress with endoscopists for the validation of the system and for the understanding of the similarity between images. The next step will integrate the system in a learning tool for junior endoscopists.


Subject(s)
Algorithms , Artificial Intelligence , Databases, Factual , Diagnosis, Computer-Assisted/methods , Endoscopy, Digestive System/methods , Pattern Recognition, Automated , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...