Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Histochem Cell Biol ; 160(3): 223-251, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37428210

ABSTRACT

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain-the file format that underlies so many personal, institutional, and global data management and analysis tasks.


Subject(s)
Microscopy , Software , Humans , Community Support
2.
bioRxiv ; 2023 May 07.
Article in English | MEDLINE | ID: mdl-36865282

ABSTRACT

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself -- OME-Zarr -- along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain -- the file format that underlies so many personal, institutional, and global data management and analysis tasks.

3.
Nat Methods ; 19(4): 461-469, 2022 04.
Article in English | MEDLINE | ID: mdl-35314838

ABSTRACT

The promise of single-objective light-sheet microscopy is to combine the convenience of standard single-objective microscopes with the speed, coverage, resolution and gentleness of light-sheet microscopes. We present DaXi, a single-objective light-sheet microscope design based on oblique plane illumination that achieves: (1) a wider field of view and high-resolution imaging via a custom remote focusing objective; (2) fast volumetric imaging over larger volumes without compromising image quality or necessitating tiled acquisition; (3) fuller image coverage for large samples via multi-view imaging and (4) higher throughput multi-well imaging via remote coverslip placement. Our instrument achieves a resolution of 450 nm laterally and 2 µm axially over an imaging volume of 3,000 × 800 × 300 µm. We demonstrate the speed, field of view, resolution and versatility of our instrument by imaging various systems, including Drosophila egg chamber development, zebrafish whole-brain activity and zebrafish embryonic development - up to nine embryos at a time.


Subject(s)
Brain , Zebrafish , Animals , Brain/diagnostic imaging , Drosophila , Embryonic Development , Microscopy, Fluorescence/methods
4.
Nat Commun ; 12(1): 2276, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859193

ABSTRACT

Deep Learning (DL) methods are powerful analytical tools for microscopy and can outperform conventional image processing pipelines. Despite the enthusiasm and innovations fuelled by DL technology, the need to access powerful and compatible resources to train DL networks leads to an accessibility barrier that novice users often find difficult to overcome. Here, we present ZeroCostDL4Mic, an entry-level platform simplifying DL access by leveraging the free, cloud-based computational resources of Google Colab. ZeroCostDL4Mic allows researchers with no coding expertise to train and apply key DL networks to perform tasks including segmentation (using U-Net and StarDist), object detection (using YOLOv2), denoising (using CARE and Noise2Void), super-resolution microscopy (using Deep-STORM), and image-to-image translation (using Label-free prediction - fnet, pix2pix and CycleGAN). Importantly, we provide suitable quantitative tools for each network to evaluate model performance, allowing model optimisation. We demonstrate the application of the platform to study multiple biological processes.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Microscopy/methods , Animals , Cell Line, Tumor , Cloud Computing , Datasets as Topic , Humans , Primary Cell Culture , Rats , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...