Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38063702

ABSTRACT

Flame spray pyrolysis (FSP) is an industrially scalable technology that enables the engineering of a wide range of metal-based nanomaterials with tailored properties nanoparticles. In the present review, we discuss the recent state-of-the-art advances in FSP technology with regard to nanostructure engineering as well as the FSP reactor setup designs. The challenges of in situ incorporation of nanoparticles into complex functional arrays are reviewed, underscoring FSP's transformative potential in next-generation nanodevice fabrication. Key areas of focus include the integration of FSP into the technology readiness level (TRL) for nanomaterials production, the FSP process design, and recent advancements in nanodevice development. With a comprehensive overview of engineering methodologies such as the oxygen-deficient process, double-nozzle configuration, and in situ coatings deposition, this review charts the trajectory of FSP from its foundational roots to its contemporary applications in intricate nanostructure and nanodevice synthesis.

2.
Phys Chem Chem Phys ; 25(45): 31040-31049, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37942877

ABSTRACT

Marbles constitute a significant family of materials, for antiquities, as well as modern constructions. Herein, we have studied Greek marbles, using electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopies, focusing on their structural microenvironment. Spin-Hamiltonian parameters derived from EPR spectra of naturally occurring 55Mn2+ (S = 5/2, I = 5/2) atoms in marbles, were studied as structural-probes. EPR data at 300 K provide a library of 55Mn2+ zero-field-splitting parameters (E, D). The effect of temperature (300 up to 700 K) on 55Mn2+-ZFS (E, D) and the strain of the D-tensor (Dstrain) was studied by high-temperature EPR spectroscopy. The EPR data, combined with 13C-ssNMR, provide detailed physicochemical information of the calcite and dolomite crystal phases in the marbles. In parallel, we have analyzed the lattice-microstrain (ε0) of the marbles' crystallites using high-resolution XRD data. Analysis of the correlation between the D-values of Mn2+ centers and (ε0)-XRD, reveals trends that reflect the provenance of the marbles. In this context, we discuss the correlation between the D-values of Mn2+ centers and (ε0)-microstrain as a novel tool to elucidate the provenance of marbles.

3.
Sci Rep ; 13(1): 13999, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37634030

ABSTRACT

Cu2O is a highly potent photocatalyst, however photocorrosion stands as a key obstacle for its stability in photocatalytic technologies. Herein, we show that nanohybrids of Cu2O/Cu0 nanoparticles interfaced with non-graphitized carbon (nGC) constitute a novel synthesis route towards stable Cu-photocatalysts with minimized photocorrosion. Using a Flame Spray Pyrolysis (FSP) process that allows synthesis of anoxic-Cu phases, we have developed in one-step a library of Cu2O/Cu0 nanocatalysts interfaced with nGC, optimized for enhanced photocatalytic H2 production from H2O. Co-optimization of the nGC and the Cu2O/Cu0 ratio is shown to be a key strategy for high H2 production, > 4700 µmoles g-1 h-1 plus enhanced stability against photocorrosion, and onset potential of 0.234 V vs. RHE. After 4 repetitive reuses the catalyst is shown to lose less than 5% of its photocatalytic efficiency, while photocorrosion was < 6%. In contrast, interfacing of Cu2O/Cu0 with graphitized-C is not as efficient. Raman, FT-IR and TGA data are analyzed to explain the undelaying structural functional mechanisms where the tight interfacing of nGC with the Cu2O/Cu0 nanophases is the preferred configuration. The present findings can be useful for wider technological goals that demand low-cost engineering, high stability Cu-nanodevices, prepared with industrially scalable process.

4.
Nanomaterials (Basel) ; 13(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37242086

ABSTRACT

Three imidazole-based hybrid materials, coded as IGOPS, IPS and impyridine@SiO2 nanohybrids, were prepared via the covalent immobilization of N-ligands onto a mesoporous nano-SiO2 matrix for H2 generation from formic acid (FA). BET and HRTEM demonstrated that the immobilization of the imidazole derivative onto SiO2 has a significant effect on the SSA, average pore volume, and particle size distribution. In the context of FA dehydrogenation, their catalytic activity (TONs, TOFs), stability, and reusability were assessed. Additionally, the homologous homogeneous counterparts were evaluated for comparison purposes. Mapping the redox potential of solution Eh vs. SHE revealed that poly-phosphine PP3 plays an essential role in FA dehydrogenation. On the basis of performance and stability, [Fe2+/IGOPS/PP3] demonstrated superior activity compared to other heterogeneous catalysts, producing 9.82 L of gases (VH2 + CO2) with TONs = 31,778, albeit with low recyclability. In contrast, [Fe2+/IPS/PP3] showed the highest stability, retaining considerable performance after three consecutive uses. With VH2 + CO2 = 7.8 L, [Fe2+/impyridine@SiO2/PP3] activity decreased, and it was no longer recyclable. However, the homogeneous equivalent of [Fe2+/impyridine/PP3] was completely inactive. Raman, FT/IR, and UV/Vis spectroscopy demonstrated that the reduced recyclability of [Fe2+/IGOPS/PP3] and [Fe2+/impyridine@SiO2/PP3] nanohybrids is due to the reductive cleavage of their C-O-C bonds during catalysis. An alternative grafting procedure is proposed, applying here to the grafting of IPS, resulting in its higher stability. The accumulation of water derived from substrate's feeding causes the inhibition of catalysis. In the case of [Fe2+-imidazole@SiO2] nanohybrids, simple washing and drying result in their re-activation, overcoming the water inhibition. Thus, the low-cost imidazole-based nanohybrids IGOPS and IPS are capable of forming [Fe2+/IGOPS/PP3] and [Fe2+/IPS/PP3] heterogeneous catalytic systems with high stability and performance for FA dehydrogenation.

5.
Sci Rep ; 12(1): 15132, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071088

ABSTRACT

Pristine zirconia, ZrO2, possesses high premise as photocatalyst due to its conduction band energy edge. However, its high energy-gap is prohibitive for photoactivation by solar-light. Currently, it is unclear how solar-active zirconia can be designed to meet the requirements for high photocatalytic performance. Moreover, transferring this design to an industrial-scale process is a forward-looking route. Herein, we have developed a novel Flame Spray Pyrolysis process for generating solar-light active nano-ZrO2-x via engineering of lattice vacancies, Vo. Using solar photons, our optimal nano-ZrO2-x can achieve milestone H2-production yield, > 2400 µmolg-1 h-1 (closest thus, so far, to high photocatalytic water splitting performance benchmarks). Visible light can be also exploited by nano-ZrO2-x at a high yield via a two-photon process. Control of monomeric Vo versus clusters of Vo's is the key parameter toward Highly-Performing-Photocatalytic ZrO2-x. Thus, the reusable and sustainable ZrO2-x catalyst achieves so far unattainable solar activated photocatalysis, under large scale production.

6.
Nanomaterials (Basel) ; 11(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669461

ABSTRACT

A flame spray pyrolysis (FSP) method has been developed, for controlled doping of BiVO4 nanoparticles with W and Zr in tandem with the oxygen vacancies (Vo) of the BiVO4 lattice. Based on XPS and Raman data, we show that the nanolattice of W-BiVO4 and Zr-BiO4 can be controlled to achieve optimal O2 evolution from H2O photocatalysis. A synergistic effect is found between the W- and Zr-doping level in correlation with the Vo-concentration. FSP- made W-BiVO4 show optimal photocatalytic O2-production from H2O, up to 1020 µmol/(g × h) for 5%W-BiVO4, while the best performing Zr-doped achieved 970 µmol/(g × h) for 5%Zr-BiVO4. Higher W-or Zr-doping resulted in deterioration in photocatalytic O2-production from H2O. Thus, engineering of FSP-made BiVO4 nanoparticles by precise control of the lattice and doping-level, allows significant enhancement of the photocatalytic O2-evolution efficiency. Technology-wise, the present work demonstrates that flame spray pyrolysis as an inherently scalable technology, allows precise control of the BiVO4 nanolattice, to achieve significant improvement of its photocatalytic efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...