Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 3(8): e167, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17722976

ABSTRACT

Predicting the function of a protein from its sequence is a long-standing goal of bioinformatic research. While sequence similarity is the most popular tool used for this purpose, sequence motifs may also subserve this goal. Here we develop a motif-based method consisting of applying an unsupervised motif extraction algorithm (MEX) to all enzyme sequences, and filtering the results by the four-level classification hierarchy of the Enzyme Commission (EC). The resulting motifs serve as specific peptides (SPs), appearing on single branches of the EC. In contrast to previous motif-based methods, the new method does not require any preprocessing by multiple sequence alignment, nor does it rely on over-representation of motifs within EC branches. The SPs obtained comprise on average 8.4 +/- 4.5 amino acids, and specify the functions of 93% of all enzymes, which is much higher than the coverage of 63% provided by ProSite motifs. The SP classification thus compares favorably with previous function annotation methods and successfully demonstrates an added value in extreme cases where sequence similarity fails. Interestingly, SPs cover most of the annotated active and binding site amino acids, and occur in active-site neighboring 3-D pockets in a highly statistically significant manner. The latter are assumed to have strong biological relevance to the activity of the enzyme. Further filtering of SPs by biological functional annotations results in reduced small subsets of SPs that possess very large enzyme coverage. Overall, SPs both form a very useful tool for enzyme functional classification and bear responsibility for the catalytic biological function carried out by enzymes.


Subject(s)
Enzymes/chemistry , Enzymes/metabolism , Peptides/chemistry , Peptides/metabolism , Sequence Analysis, Protein/methods , Amino Acid Motifs , Amino Acid Sequence , Molecular Sequence Data , Protein Structure, Tertiary , Structure-Activity Relationship
2.
Bioinformatics ; 23(13): i440-9, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17646329

ABSTRACT

MOTIVATION: Current methodologies for the selection of putative transcription factor binding sites (TFBS) rely on various assumptions such as over-representation of motifs occurring on gene promoters, and the use of motif descriptions such as consensus or position-specific scoring matrices (PSSMs). In order to avoid bias introduced by such assumptions, we apply an unsupervised motif extraction (MEX) algorithm to sequences of promoters. The extracted motifs are assessed for their likely cis-regulatory function by calculating the expression coherence (EC) of the corresponding genes, across a set of biological conditions. RESULTS: Applying MEX to all Saccharomyces cerevisiae promoters, followed by EC analysis across 40 biological conditions, we obtained a high percentage of putative cis-regulatory motifs. We clustered motifs that obtained highly significant EC scores, based on both their sequence similarity and similarity in the biological conditions these motifs appear to regulate. We describe 20 clusters, some of which regroup known TFBS. The clusters display different mRNA expression profiles, correlated with typical changes in the nucleotide composition of their relevant motifs. In several cases, a variation of a single nucleotide is shown to lead to distinct differences in expression patterns. These results are confronted with additional information, such as binding of transcription factors to groups of genes. Detailed analysis is presented for clusters related to MCB/SCB, STRE and PAC. In the first two cases, we provide evidence for different binding mechanisms of different clusters of motifs. For PAC-related motifs we uncover a new cluster that has so far been overshadowed by the stronger effects of known PAC motifs. SUPPLEMENTARY INFORMATION: Supplementary data are available at http://adios.tau.ac.il/regmotifs and at Bioinformatics online.


Subject(s)
Algorithms , Gene Expression/genetics , Genetic Variation/genetics , Nucleotides/genetics , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
3.
Proc Natl Acad Sci U S A ; 102(33): 11629-34, 2005 Aug 16.
Article in English | MEDLINE | ID: mdl-16087885

ABSTRACT

We address the problem, fundamental to linguistics, bioinformatics, and certain other disciplines, of using corpora of raw symbolic sequential data to infer underlying rules that govern their production. Given a corpus of strings (such as text, transcribed speech, chromosome or protein sequence data, sheet music, etc.), our unsupervised algorithm recursively distills from it hierarchically structured patterns. The adios (automatic distillation of structure) algorithm relies on a statistical method for pattern extraction and on structured generalization, two processes that have been implicated in language acquisition. It has been evaluated on artificial context-free grammars with thousands of rules, on natural languages as diverse as English and Chinese, and on protein data correlating sequence with function. This unsupervised algorithm is capable of learning complex syntax, generating grammatical novel sentences, and proving useful in other fields that call for structure discovery from raw data, such as bioinformatics.


Subject(s)
Language , Learning , Algorithms , Computational Biology , Computers , Humans , Models, Theoretical
4.
Article in English | MEDLINE | ID: mdl-16447965

ABSTRACT

We present a novel unsupervised method for extracting meaningful motifs from biological sequence data. This de novo motif extraction (MEX) algorithm is data driven, finding motifs that are not necessarily over-represented in the data. Applying MEX to the oxidoreductases class of enzymes, containing approximately 7000 enzyme sequences, a relatively small set of motifs is obtained. This set spans a motif-space that is used for functional classification of the enzymes by an SVM classifier. The classification based on MEX motifs surpasses that of two other SVM based methods: SVMProt, a method based on the analysis of physical-chemical properties of a protein generated from its sequence of amino acids, and SVM applied to a Smith-Waterman distances matrix. Our findings demonstrate that the MEX algorithm extracts relevant motifs, supporting a successful sequence-to-function classification.


Subject(s)
Algorithms , Amino Acid Motifs , Artificial Intelligence , Pattern Recognition, Automated/methods , Proteins/chemistry , Sequence Alignment/methods , Sequence Analysis, Protein/methods , Amino Acid Sequence , Molecular Sequence Data , Proteins/classification , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...