Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 100(1): 52-63, 2020 01.
Article in English | MEDLINE | ID: mdl-31477795

ABSTRACT

Autophagy appears to play a role in the etiology and progress of misfolded protein disorders. Although this process is dysregulated in prion diseases, it is unknown whether this impairment is a cause or a consequence of prion neuropathology. The study of autophagy during the progress of the disease could elucidate its role. For this purpose, we have investigated its regulation at different stages of the disease in Tg338 mice, a transgenic murine model that overexpresses the highly susceptible ovine VRQ prion protein allele. Mice were intracerebrally inoculated with mouse-adapted classical scrapie and euthanized at the preclinical and clinical stages of the disease. Regulation of autophagy was investigated analyzing the distribution of LC3-B and p62 proteins by immunohistochemistry. Moreover, the expression of genes involved in autophagy regulation was quantified by real-time PCR. LC3-B and p62 proteins were downregulated and upregulated, respectively, in the central nervous system of infected mice with clinical signs of scrapie. Accumulation of p62 correlated with scrapie-related lesions, suggesting an impairment of autophagy in highly prion-affected areas. In addition, Gas5 (growth arrest-specific 5), Atg5 (autophagy-related 5), and Fbxw7 (F-box and WD repeat domain containing 7) transcripts were downregulated in mesencephalon and cervical spinal cord of the same group of animals. The impairment of autophagic machinery seems to be part of the pathological process of scrapie, but only during the late stage of prion infection. Similarities between Tg338 mice and the natural ovine disease make them a reliable in vivo model to study prion infection and autophagy side by side.


Subject(s)
Autophagy , Disease Models, Animal , Scrapie/metabolism , Animals , Brain/metabolism , Brain/pathology , Cervical Cord/metabolism , Mice, Transgenic , RNA, Messenger/metabolism , RNA, Untranslated/metabolism , Scrapie/etiology , Scrapie/pathology , Sheep
2.
Sci Immunol ; 3(30)2018 12 07.
Article in English | MEDLINE | ID: mdl-30530727

ABSTRACT

Ectopic expression of transcription factors has been used to reprogram differentiated somatic cells toward pluripotency or to directly reprogram them to other somatic cell lineages. This concept has been explored in the context of regenerative medicine. Here, we set out to generate dendritic cells (DCs) capable of presenting antigens from mouse and human fibroblasts. By screening combinations of 18 transcription factors that are expressed in DCs, we have identified PU.1, IRF8, and BATF3 transcription factors as being sufficient to reprogram both mouse and human fibroblasts to induced DCs (iDCs). iDCs acquire a conventional DC type 1-like transcriptional program, with features of interferon-induced maturation. iDCs secrete inflammatory cytokines and have the ability to engulf, process, and present antigens to T cells. Furthermore, we demonstrate that murine iDCs generated here were able to cross-present antigens to CD8+ T cells. Our reprogramming system should facilitate better understanding of DC specification programs and serve as a platform for the development of patient-specific DCs for immunotherapy.


Subject(s)
Antigen-Presenting Cells/immunology , Fibroblasts/immunology , Animals , Cells, Cultured , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...