Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1461: 76-86, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22572084

ABSTRACT

We previously observed that 17ß-estradiol (E2) augments ischemic borderzone vascular density 10 days after focal cerebral ischemia-reperfusion in rats. We now evaluated the effect of E2 on vascular remodeling, lesional characteristics, and motor recovery up to 30 days after injury. Peri-lesional vascular density in tissue sections from rats treated with 0.72 mg E2 pellets was higher compared to 0.18 mg E2 pellets or placebo (P) pellets: vascular density index, 1.9 ± 0.2 (0.72 mg E2) vs. 1.4 ± 0.2 (0.18 mg E2) vs. 1.5 ± 0.4 (P), p=0.01. This was consistent with perfusion magnetic resonance imaging (MRI) measurements of lesional relative cerebral blood flow (rCBF): 1.89 ± 0.32 (0.72 mg E2) vs. 1.32 ± 0.19 (P), p=0.04. Post-ischemic angiogenesis occurred in P-treated as well as E2-treated rats. There was no treatment-related effect on lesional size, but lesional tissue was better preserved in E2-treated rats: cystic component as a % of total lesion, 30 ± 12 (0.72 mg E2) vs. 29 ± 17 (0.18 mg E2) vs. 61 ± 29 (P), p=0.008. Three weeks after right middle cerebral artery territory injury, rats treated with 0.72 mg E2 pellets used the left forelimb more than P-treated or 0.18 mg E2-treated rats: limb use asymmetry score, 0.09 ± 0.43 (0.72 mg E2) vs. 0.54 ± 0.12 (0.18 mg E2) vs. 0.54 ± 0.40 (P), p=0.05. We conclude that treatment with 0.72 mg E2 pellets beginning one week prior to ischemia/reperfusion and continuing through the one-month recovery period results in augmentation of lesional vascularity and perfusion, as well as improved motor recovery.


Subject(s)
Brain Ischemia/drug therapy , Cerebrovascular Circulation/drug effects , Disease Models, Animal , Estradiol/therapeutic use , Recovery of Function/drug effects , Stroke/drug therapy , Animals , Brain Ischemia/physiopathology , Cerebrovascular Circulation/physiology , Estradiol/pharmacology , Female , Rats , Rats, Wistar , Recovery of Function/physiology , Stroke/physiopathology , Time Factors , Treatment Outcome
2.
J Histochem Cytochem ; 58(1): 53-60, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19786610

ABSTRACT

Angiopoietin-1 (Angpt1; previously Ang-1) participates in vascular maintenance and remodeling. In the current study, we investigated the distribution of Angpt1 protein in rat brain. We detected Angpt1 immunoreactivity (IR) in cerebral blood vessels, cuboidal ependyma, and tanycytes, which are specialized hypothalamic bipolar ependymal cells. We also evaluated patterns of IR of endothelium-specific receptor tyrosine kinase 2 (Tie2, the receptor for Angpt1). Tie2 IR was present in Angpt1-immunoreactive cuboidal ependyma in a membranous pattern, suggesting an autocrine or paracrine role for Angpt1-Tie2. Tie2 IR was also associated with peri-ependymal blood vessels, some of which were contacted by tips of Angpt1-immunoreactive tanycyte processes, implying a potential functional ligand-receptor interaction mediating communication between the cerebrospinal fluid and vascular compartments. Because we previously found that cerebral Angpt1 expression was modulated by 17beta-estradiol (E2), and because some tanycyte functions are modulated by E2, we tested the hypothesis that E2 affects ependymal and tanycyte Angpt1 expression in vivo. No gross E2 effect on the ependymal pattern of Angpt1 IR or cerebral Angpt1 protein content was observed.


Subject(s)
Angiopoietin-1/analogs & derivatives , Blood Vessels/metabolism , Ependyma/metabolism , Hypothalamus/metabolism , Receptor, TIE-2/metabolism , Angiopoietin-1/immunology , Angiopoietin-1/metabolism , Animals , Antibodies , Astrocytes/metabolism , Blotting, Western , Estradiol/blood , Female , Lectins , Male , Pericytes/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...